IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1991

Structural studies of the metal-rich region in the ternary Ta-Nb-S system

Xiaoqiang Yao Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Physical Chemistry Commons</u>

Recommended Citation

Yao, Xiaoqiang, "Structural studies of the metal-rich region in the ternary Ta-Nb-S system " (1991). *Retrospective Theses and Dissertations*. 9790. https://lib.dr.iastate.edu/rtd/9790

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digrep@iastate.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

U·M·I

University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, MI 48106-1346 USA 313/761-4700 800/521-0600

Order Number 9212206

Structural studies of the metal-rich region in the ternary Ta-Nb-S system

> Yao, Xiaoqiang, Ph.D. Iowa State University, 1991

• • •

æ.,

•

Structural studies of the metal-rich region in the ternary Ta-Nb-S system

by

Xiaoqiang Yao

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

> Department: Chemistry Major: Physical Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

(For the Major^V Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

TABLE OF CONTENTS

GENERAL INTRODUCTION	1
EXPLANATION OF DISSERTATION FORMAT	15
PART I: SYNTHESIS AND CHARACTERIZATION OF NOVEL TERNARY METAL-RICH COMPOUNDS	
IN TA-ND-S SYSTEM	16
INTRODUCTION	. 17
EXPERIMENTAL	19
CRYSTAL STRUCTURE OF $Nb_xTa_{11-x}S_4$ (x \approx 4.92)	30
CRYSTAL STRUCTURE OF $Nb_{12-x}Ta_xS_4$ (x \approx 5.26)	47
CRYSTAL STRUCTURE OF $Nb_xTa_{5-x}S_2$ (x \approx 1.72)	64
CRYSTAL STRUCTURE OF $Nb_xTa_{2-x}S$ (x \approx 0.95)	78
CRYSTAL STRUCTURE OF $Nb_{21-x}Ta_xS_8$ (x \approx 6.2)	92
CRYSTAL STRUCTURE of $Nb_xTa_{2-x}S$ (x \approx 0.2)	102
DISCUSSIONS OF THE METAL-RICH REGION IN THE TERNARY Ta-Nb-S SYSTEM	113
PART II: EXTENDED HÜCKEL BAND CALCULATIONS	
ON TWO NOVEL LAYERED COMPOUNDS:	
$Nb_xTa_{5-x}S_2$ (x ≈ 1.72) and $Nb_xTa_{2-x}S_3$ (x ≈ 0.95)	122
INTRODUCTION	123
CALCULATION METHOD	125
BAND STRUCTURES OF Nb. Ta	
$Nb_{x}Ta_{2-x}S$ (x \approx 0.95)	129
GENERAL SUMMARY	145
FUTURE WORK	147

.

REFERENCES	CITED	L49
ACKNOWLEDG	EMENTS 1	L54
APPENDIX A	. OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (x10) FOR $Nb_xTa_{11-x}S_4$ (x \approx 4.92)	L55
APPENDIX B	. OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (x10) FOR $Nb_{12-x}Ta_xS_4$ (x \approx 5.26)	L64
APPENDIX C	OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (x10) FOR $Nb_xTa_{5-x}S_2$ (x \approx 1.72)	L70
APPENDIX D	OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (x10) FOR $Nb_xTa_{2-x}S$ (x \approx 0.95)	172
APPENDIX E	. OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (x10) FOR $Nb_{21-x}Ta_xS_8$ (x \approx 6.2)	L74
APPENDIX F	C. OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (x10) FOR $Nb_xTa_{2-x}S$ (x \approx 0.2)	L79

•

.

iii

GENERAL INTRODUCTION

Early transition metal-rich chalcogenides $(n_M/n_X > 1; M$ represents metals in Group IVB and VB, and X represents chalcogen elements) have played an important role in developing understanding of the nature of interactions in solids. They are different from conventional compounds, e.g., NaCl, CaF2, in which metal and nonmetal are in direct contact only with each other. They form a class of compounds in which there are many metalmetal interactions and the metal-metal interactions run through the whole structure rather than being limited within isolated metal clusters, e.g., in some transition metal-rich halides, Sc_7Cl_{10} ,¹ Tb₂Cl₃² and Gd₂Cl₃.³ Because metal can interact with metal directly to form so called metal-metal bonds and these play a dominant role in the structure, early transition metal-rich chalcogenides usually exhibit low volatility, high melting point and have typical metallic properties, e.g., high electrical conductivity, Pauli paramagnetism, and metallic luster. They are also typically hard and brittle. Unusual properties, one of which is the high coordination number of the chalcogen atoms, are exhibited by the metal-rich compounds because of the robust metal-metal bonding in the solids. The diverse structure types and stoichiometries of the metal-rich compounds also have their origin in the metal-metal bonding in the compounds. Early transition metal-rich chalcogenides usually have high melting

points, so they are good candidates for refractory material applications.

Although the first early transition metal-rich chalcogenides, α -V₃S and β -V₃S,⁴ were found as early as 1959 by Pedersen and Grønvold, little progress had been made in this area until in 1966 Franzen and coworkers successfully synthesized the third one, Hf₂S.⁵ A large number of binary early transition metal-rich chalcogenides have been gradually found since 1966.

Now it is known that all of the early transition metals in Group IVB and VB can form metal-rich compounds with both sulfur and selenium and metals in Group IIIB and VIB apparently cannot form this kind of compound with chalcogen elements. The binary early transition metal-rich chalcogenides exhibit some common structural features, e.g., short metal-metal distances (comparable to those in the metallic elemental state) and high coordination number of the chalcogen atoms. Despite the common features exhibited by the binary early transition metal-rich chalcogenides, many different features, e.g., the polyhedron type around metals and nonmetals and the chemical compositions, have their origin in the ability of metals to form bonds with metals directly. From the point of view of structures the binary early transition metal-rich chalcogenides may be divided into four classes.

The number of binary early transition metal-rich chalcogenides belonging to first class is greater than that of

the other ones. The compounds in this class include $Ti_2S_1^6$ Zr_2S , ⁷ Ti₂Se, ⁸ Zr_2Se , ⁹ $Nb_{21}S_8$, ¹⁰ $Zr_{21}S_8$, ⁷ $Nb_{14}S_5$ ¹¹ and Ti₈S₃. ¹² They belong to four different structure types, namely the Ta_2P ,¹³ Nb₂₁S₈, Nb₁₄S₅ and Ti₈S₃ types, respectively; but they exhibit some common features. Their structures can be viewed as modified bcc metal structures in which nonmetals substitute for the metals in some of the distorted body centered cubes or play a bridge role, connecting the metallic distorted body centered cubes to form a three dimensional network through the whole structure. The coordinations around the chalcogen atoms are capped trigonal prismatic, a dominant feature in this kind of metal-rich compound. The coordination number of the chalcogen atoms are 6, 7, 8 and 9 for noncapped, monocapped, bicapped and tricapped trigonal prisms, respectively. The coordinations around the metals are capped distorted cubic prismatic, and it may be thought that in the structures of these compounds there are a lot of distorted body-centerd cubes and they form three dimensional networks through the structures by sharing corners, or faces. In some cases the capped distorted cubic prisms have some corners substituted by chalcogen atoms, and it is not difficult to believe that the chalcogen elements exhibit some metallic character. This idea is supported by the high coordination numbers of the chalcogen atoms. Except for the coordinations around the metal atoms and nonmetal atoms the common features shared by this class of metal-rich compounds include the

existence of a short axis (about 3.3 Å) which is perpendicular to a mirror plane, all of the metal atoms and nonmetal atoms are located on the mirror planes perpendicular to the short axis and separated from each other by half of the short axis (about 1.6 Å). The existence of short metal-metal distances comparable to those in the metallic elemental state and the metal coordination polyhedra which are more or less reminiscent of the coordination of metals in the bcc structure type (i.e., in the structure type of the high temperature form of the metal in the case of the Group IVB transition metals) are also common features of the structures in this class. Some binary early transition metalrich phosphides, such as Ta₂P,¹³ Hf₂P,¹⁴ Nb₈P₅,¹⁵ Nb₇P₄,¹⁶ Nb_5P_3 , ¹⁷ Zr_2P^{18} and large varieties of other transition metalrich phosphides synthesized by Rundqvist et al also belong to this class.

Binary early transition metal-rich chalcogenides belonging to the second class have only been found in the Ta-S system, namely Ta_2S ,¹⁹ α -Ta₆S (monoclinic form),²⁰ β -Ta₆S (triclinic form)²¹ and Ta_3S_{2-x} (x = 0.2).²² In the binary Ta-S system only these four metal-rich phases are known. The common feature of this class of compounds is the occurance of clusters made up of tantalum atoms. Although the structure types of the four binary tantalum-rich sulfides are different from each other, a common structural feature shared by all of them is that the structures can be viewed as tantalum clusters consisting of linear chains of face-

sharing centered pentagonal antiprisms which interact via direct metal-metal interactions. Sulfur atoms play a bridging role in the structures. The centering atoms form linear chains that are surrounded by the face-sharing pentagonal antiprisms of tantalum The distances between two tantalum atoms in the linear atoms. chains are 2.79 Å, 2.64 Å, 2.62 Å and 2.80 Å in Ta_2S , ¹⁹ α -Ta₆S (monoclinic form),²⁰ β -Ta₆S (triclinic form)²¹ and Ta₃S_{2-x} (x = 0.2),²² respectively. The shortest distance between two metal atoms in elemental tantalum is 2.86 Å, thus strong metal-metal interactions undoubtedly exist in these compounds. The structural differences among the tantalum-rich sulfides is in the arrangement of the tantalum clusters, i.e., the arrangement of the linear chains of face-sharing pentagonal antiprisms in the structure and the resultant difference in the sulfur coordination. The coordination numbers of the sulfur atoms are 4 and 6, 7, 7 and 4 in Ta_2S , ¹⁹ α -Ta₆S (monoclinic form), ²⁰ β -Ta₆S (triclinic form)²¹ and $Ta_{3}S_{2-x}$ (x = 0.2),²² respectively. There are non-bonding orbitals on the sulfur atoms coordinated with four atoms. The coordination number of four is unusually low for binary early transition metal-rich chalaogenides and phospides and has been found only in Ta_2S , Ta_3S_{2-x} (x = 0.2) and Nb_2Se^{23} . Hughbanks et al.²⁴ used a formula Ta_6S_n (n = 1, 3, 4 and 5) to represent all of the tantalum-rich sulfides known and assumed that $\frac{1}{\infty}$ [Ta₅TaS₅] may be thought to be a building block for Ta₂S, and Ta_3S_2 . In the Ta_6S_5 chain, tantalum atoms form a chain of

fused, centered pentagonal antiprisms and sulfur atoms surround the $\frac{1}{\infty}$ [Ta₅TaS₅] chain so as to cap alternate exposed triangular faces. Ta₂S and Ta₃S₂ may be thought to be three dimensional and two dimensional networks, respectively, built from condensed Ta₆S₅ chains.

The third class of early transition metal-rich chalcogenides includes α -V₃S, ⁴ β -V₃S⁴ and Zr₉S₂.²⁵ In this class the principal structural feature is a 22 atom unit consisting of three sixmembered rings forming two face-sharing (hexagonal faces) hexagonal antiprisms with atoms in their centers, and two capping atoms off the centers of the two hexagonal faces. There are four chalcogen atoms in these units, two in each of the two outer sixmembered rings, and the remainder of the atoms are metals. The sulfur coordinations are square antiprismatic for these three metal-rich compounds. There are also some metal-rich phosphides belonging to this class, such as Ti₃P, ^{26,27} Nb₃P, ²⁸ Ta₃P²⁹ and Fe₃P.³⁰

The fourth class of metal-rich compounds consists of layered compounds. There are only two binary metal-rich compounds, Hf_2S^5 and Ta_2Se ,³¹ in this class. Hf_2S is the first layered compound found in which direct metal-metal interactions exist. The structure of Hf_2S is hexagonal with an ABACBC stacking sequence with the layers of Hf S Hf Hf S Hf. The coordinations of the metal atoms and nonmetal atoms are trigonal antiprismatic and trigonal prismatic, respectively. Recently a novel binary metal-

rich compounds, Ta₂Se, was found by Harbrecht. The stacking sequence of Ta₂Se is Se-Ta-Ta-Ta-Ta-Se with a bcc basis instead of the hcp basis found for almost all of the layered transition metal chalcogenides and halides. In this novel layered compound van der Waals interactions are responsible for holding together the Se-4Ta-Se network with direct metal-metal interactions existing between the metal layers.

Finally there is a compound, Nb_2Se ,²³ which may be included in the first class based on the capped distorted cubic prismatic coordination of the metal atoms, but the coordinations of the nonmetals are similiar to those in Ta₂S, i.e., incomplete trigonal prismatic. Van der Waals interactions exist between the selenium atoms.

Actually these four classes of metal-rich compounds also include all of the binary early transition metal-rich phosphides.³²

The early transition metals of the fifth and sixth rows but in the same column of the periodic table are expected to exhibit very similiar properties because of the lanthanide contraction.³³ This is true for many of the compounds of niobium and tantalum with the metal-rich sulfides being a striking exception. Niobium and tantalum form many isostructural compounds with nonmetals or polyanionic clusters, even with sulfur in conventional valence compounds. But not one niobium-rich sulfide was found to be isostructural with a tantalum-rich sulfide, moreover there are

striking differences between them, e.g., the coordination around the metals and nonmetals are totally different. They belong to two different classes of metal-rich compounds as mentioned above. The reason for the striking structural difference was discussed by Smeggil in his Ph.D thesis.³⁴ By considering the number of unpaired electrons on each electron configuration and the promotion energies for getting this electron configuration from the ground state, Smeggil concluded that the final electron configurations possessed by metals in the metal-rich sulfides are d^4s and d^5 for Nb and Ta, respectively; and that this is the reason for the striking structural difference between niobiumrich and tantalum-rich sulfides.

Consequently there is a natural question: what structures (if any) occur for ternary (Nb, Ta)-rich sulfides?

Although ternary metal-rich chalcogenides containing early transition metals were investigated as early as 1985, only little attention has been paid to these systems. There had been, prior to this work, only several ternary metal-rich compounds $(M_xM'_yX_z;$ $(n_x + n_y)/n_z > 1; M, M'$ are transition metals and at least one of them is an early transition metal; X is S or Se) found, namely $M_2Ta_9S_6$ (M = Fe, Co and Ni)³⁵ and $M'_xTa_{6-x}S$ (x ≈ 1, M' = V and Cr).³⁶ In this research the metal-rich region of the ternary Ta-Nb-S system was explored.

The previously known ternary metal-rich chalcogenides exhibited new structure features. The structure of $M_2Ta_9S_6$ (M =

Fe, Co and Ni)³⁵ can be viewed as a hexagonal network of Ta_9 tricapped trigonal prisms with their centers occupied by M, sharing faces along the c-axis and sharing capping atoms with sulfur on the exterior of the network and surrounding a large channel.

The structure of $M'_{x}Ta_{6-x}S$ (x ≈ 1 , M' = V and Cr) can be viewed as a substitutional solid solution of early 3-d transition metal in α -Ta₆S, i.e., some metal positions occupied by two kinds of metal elements. The tantalum clusters in the compounds are similiar to those in Ta₆S, i.e., a close packing of metal columns made up of interpenetrating icosahedra. The principal structural difference between $M'_{x}Ta_{6-x}S$ and α -Ta₆S is the orientation of the tantalum clusters and a resultant difference in the sulfur coordination. In $M'_{x}Ta_{6-x}S$ the sulfur is eight coordinate in a square antiprism, while in α -Ta₆S it is seven coordinate in a monocapped trigonal prism.

Since this research was initiated, several additional ternary compounds have been found by other researchers. They include a variety of substitutional ternary metal-rich chalcogenides and three novel patterns of condensed tricapped trigonal prismatic cluster type compounds, $M_2Ta_{11}Se_8$ (M = Fe, Co and Ni).³⁷

In the structure of $M_2Ta_{11}Se_8$ the cluster of MTa_9 , as in $M_2Ta_9S_6$, also exists, but hexagonal networks are not formed by the MTa_9 clusters in the selinide. The structure of $M_2Ta_{11}Se_8$ is built from clusters of MTa_9 condensed via trans-triangulated

trigonal prism faces along the c direction and via one out of three capping tantalum atoms. In both the sulfides and selinides low coordination chalcogen atoms exist.

The substitutional solid solution type early transition metal-rich chalcogenides can be divided into two catagories. One catagory includes the compounds which are isostructural with known binary metal-rich compounds, e.g. $Hf_xTi_{21-x}S_8$ (x = 7.47)³⁸ (Nb₂₁S₈¹⁰-type), $Hf_{2-x}Ti_xS^{38}$ (Hf₂S⁵-type), $M_xNb_6S_{3-x}$ (M = Fe, Co and Ni; x ≈ 1)³⁹ and $Cu_xNb_6S_{3-x}$ (x = 0.46)⁴⁰ (Ta₂P¹³-type), $M_xTa_{6-x}S$ (M = V and Cr, x ≈ 0.32)⁴¹ (β-Ta_6S²¹-type) and $V_xNb_{14-x}S_5$ (x = 3.14)⁴² (Nb₁₄S₅¹¹-type). The second catagory includes the compounds which exhibit new structure types, e.g. $M_xTa_{6-x}S$ (M = V and Cr, x ≈ 1)³⁶ and Nb₉Ni_{2-x}S_{3+x} (x = 0.63).³⁹

In the structure of $Nb_9Ni_{2-x}S_{3+x}^{39}$ clusters of $NiNb_9$ similiar to those in $M_2Ta_9S_6$ and $M_2Ta_{11}Se_8$ exist. The difference among these structures is the arrangement of the clusters on the plane parallel to the axes of centered trigonal prisms of MM'_9 (MTa₉, NiNb₉).

Unlike other ternary substitutional solid solution type metal-rich compounds in which metals partially substitute another kind of metal, 3-d transition metals partially occupy the positions of nonmetals in $M_x Nb_6 S_{3-x}$ (M = Fe, Co, Ni and Cu)^{39,40} and $Nb_9 Ni_{2-x} S_{3+x}$.³⁹

The known binary and ternary early transition metal-rich chalcogenides are listed in Table 1.

Compound	Structure type	Space group	Lattice parameters Å	Reference
Fe _x Nb ₆ S _{3-x} (x ≈ 1)	Ta ₂ P	Pnnm	a = 11.620 b = 14.512 c = 3.384	39
Co _x Nb ₆ S _{3-x} (x ≈ 1)	Ta ₂ P	Pnnm	a = 11.606 b = 14.463 c = 3.390	39
Ni _x Nb ₆ S _{3-x} (x ≈ 1)	Ta ₂ P	Pnnm	a = 11.625 b = 14.429 c = 3.394	39
Cu _x Nb ₆ S _{3-x} (x ≈ 0.46)	Ta ₂ P	Pnnm	a = 11.613 b = 14.434 c = 3.395	40
$\frac{\text{Hf}_{x}^{\text{Ti}}21-x^{S}8}{(x \approx 7.47)}$	NB2188	14/m	a = 16.970 c = 3.362	38
Hf _{2-x} Ti _x S	hf ₂ s	P6 ₃ /mmc	a = 3.362 c = 11.751	38
$v_x^{Nb}_{14-x}S_5$ (x ~ 3.14)	Nb ₁₄ S ₅	Pnma	a = 18.189 b = 3.326 c = 19.453	42

Table 1 Summary of Substitutional Ternary Metal-rich Chalcogenides

Tak)le	1 (conti	inued)
-----	-----	-----	-------	--------

Compound	Structure type	Space group	Lattice parameters Å	Reference
$^{Nb}21-x^{Ta}x^{S}8$ (x ~ 6.2)	Nb2188	14/m	a = 16.820 c = 3.341	this work
$Nb_xTa_{2-x}S$ (x \approx 0.2)	Ta ₂ S	Pbcm .	a = 7.372 b = 5.576 c = 15.198	this work
Nb _x Ta _{6-x} S	α-Ta ₆ S	C2/c	a = 14.121 b = 5.285 c = 14.833 $\beta = 117.97^{\circ}$	this work
Nb _x Ta _{6-x} S	β-та ₆ S	ΡĪ	a = 5.258 b = 7.589 c = 7.626 α = 59.31° β = 68.67° γ = 77.36°	this work
V _x Ta _{6-x} S (x ≈ 0.32)	β-Ta ₆ S	ΡĪ	a = 5.205 b = 7.560 c = 7.609 α = 59.38° β = 68.59° γ = 77.74°	41

Table 1	. (coni	tinued)
---------	---------	---------

Compound	Structure type	Space group	Lattice parameters Å	Reference
^{Cr} x ^{Ta} 6-x ^S (x ≈ 0.34)	β-Ta ₆ S	₽ 1	a = 5.143 b = 7.544 c = 7.602 α = 59.47° β = 68.47° γ = 78.14°	41
$Nb_x Ta_{2-x}S$ (x ~ 0.95)	Ta ₂ Se	P4/nmm	a = 3.330 c = 9.093	this work
V _x Ta _{6-x} S (x ≈ 2.25)	v _x ™a _{6-x} S	C2/c	a = 7.431 b = 12.746 c = 4.977 β = 111.95°	36
Cr _x Ta _{6-x} S (x ≈ 0.96)	V _x ™a _{6−x} S	C2/c	a = 7.510 b = 12.911 c = 5.056 β = 111.31°	36
$\frac{Nb_9Ni_{2-x}S_{3+x}}{(x \approx 0.63)}$	Nb9Ni2-x ^S 3+x	Cmcm	a = 3.343 b = 14.928 c = 17.687	39

Table	1 ((continued)
-------	-----	-------------

Compound	Structure type	Space group	Lattice parameters Å	Reference
$Nb_xTa_{11-x}S_4$ (x \approx 4.92)	Nb _x Ta _{11-x} S4	Pnma	a = 31.210 b = 3.351 c = 9.592	this work
$Nb_{12-x}Ta_xS_4$ (x ≈ 5.26)	Nb _{12-x} Ta _x S ₄	Pnma	a = 9.591 b = 3.364 c = 32.825	this work
Nb _x Ta _{5-x} S ₂ (x ≈ 1.72)	Nb _x Ta _{5-x} S ₂	I4/mmm	a = 3.320 c = 21.619	this work

EXPLANATION OF DISSERTATION FORMAT

The thesis is in two parts. The first part includes the discussion of the general techniques used in the investigations, namely, high temperature techniques in preparative work and x-ray diffraction techniques in the characterization of the compounds. The first part also presents the structural chemistry of the metal-rich compounds, $Nb_xTa_{11-x}S_4$ (x \approx 4.92), $Nb_{12-x}Ta_xS_4$ (x \approx 5.26), $Nb_xTa_{5-x}S_2$ (x \approx 1.72), $Nb_xTa_{2-x}S$ (x \approx 0.95), $Nb_{21-x}Ta_xS_8$ (x \approx 6.2) and $Nb_xTa_{2-x}S$ (x \approx 0.20) found in the ternary Ta-Nb-S system.

The second part presents results of extended Hückel band calculations for two layered compounds, $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$ (Ta₂Se-type) found in the ternary Ta-Nb-S system.

Future research activities to broaden the understanding and applicability of the chemistry of substitutional type ternary solids in the M-M'-X (M, M' are early transition metals while X is nonmetal) system and of the new principle regarding the bonding in $(Nb,Ta)_{x}S_{y}$ (x > y) compounds are proposed in the last chapter.

PART I: SYNTHESIS AND CHARACTERIZATION OF NOVEL TERNARY METAL-RICH COMPOUNDS IN TA-ND-S SYSTEM

.

INTRODUCTION

Synthesis of new solid compounds is a central activity in the field of solid-state chemistry. All of the applications of materials depend on the successful synthesis of materials. If the material has not been synthesized, its properties cannot be measured. The high-temperature superconductors 43 , 44 , 45 had to be synthesized before their unusual properties could be found. Although not every compound synthesized exhibits useful properties, there is always the possibility of a new superconductor, a new catalyst that could revolutionize the petroleum industry, or something with entirely unprecedented properties could be found through continuing efforts in solid-state syntheses.

Since there are few rules governing the formation, stoichiometry and structure of solid compounds, the hunt for new solid compounds also helps us to understand basic solid-state chemistry. Professor DiSalvo of Cornell University says: "Every material that can possibly come our way is sitting there in the periodic table. It is a puzzle that has been given to us by God... and it is one of the most exciting brain teasers that science will ever have."⁴⁶ "Consequently, the synthesis of novel solids is as much an art as a science. Discoveries of new compounds and structure types highlight the versatility that nature has allowed with the relatively small number of

elements."⁴⁷ Thus it is not hard to see the importance of synthesis in solid-state chemistry.

Based upon the above arguments an attempt was made to synthesize ternary metal-rich compounds in the Ta-Nb-S system. The purpose of this exploration is to enrich the body of information about the metal-metal bonding in compounds and hopefully to find some useful materials.

EXPERIMENTAL

A. Synthesis Techniques

All of early transition metal-rich chalcogenides have been synthesized using high-temperature techniques (> 1200° C). There are two kinds of reasons responsible for the requirement of hightemperatures, namely thermodynamic and kinetic reasons.

The standard change in Gibbs free energy can be obtained from the equation: $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$. If the formation of the solid from neighboring phases is endothermic and endoentropic, the reaction will not occur spontaneously at normal temperature because ΔG° is positive. When temperature is increased and reaches the critical point that entropy of the reaction plays a dominant role, i.e., $T = \Delta H^{\circ}/\Delta S^{\circ}$, the reaction will become spontaneous. At present thermodynic data for metal-rich compounds are extremely lacking. There are only two metal-rich chalcogenides, Ta_2S and Ta_6S , for which $\Delta H^{\circ}_{f,298}/R$ (-21.0 and -24.5)⁴⁸ are known at present.

Another possible reason for using high-temperature techniques is kinetic. At temperatures below 1000°C the rate of diffusion of non-metals into metals and/or metals into compounds to form metal-rich compounds is too low to reach equilibrium in any experimentally feasible period. The activation energies for diffusion to form metal-rich compounds fall roughly in the range of 70 to 140 kJ mol⁻¹, and thus the formation process is approximately 200 to 50,000 times faster at 1500K than it is at 1000K. Reactions of forming ternary metal-rich compounds consisting of two metals have higher activation energies than those of forming binary metal-rich compounds, and thus increases of reaction temperatures have more notable effect on increasing the reaction processes for forming ternary metal-rich compounds.

There are two apparatuses traditionally used in our group to obtain high-temperatures (> 1200° C), the induction furnace and the arc-melter. Usually an initial reaction between sulfur and metals is carried out in a resistance furnace at lower temperature (< 900° C) to combine the sulfur with the metals to minimize loss of sulfur when the sample is taken to high temperatures.

The general procedures used in this work for the preparation of ternary metal-rich compounds in the Ta-Nb-S system are given below. More specific conditions are considered for each in their respective sections.

1. Synthesizing initial products at lower temperature (< 900°C)

The desired amounts of elements in powder form (metals were mixed well using a spatula) were introduced into a clean 8mm silica tube sealed at one end in a dry-box filled with argon. A long funnel was used to avoid samples sticking to the wall of the tube and complicating the sealing process. After the tube containing elements was evacuted by an oil diffusion pump backed

by a mechanical pump, it was sealed off with a gas-oxygen torch. After the tube was checked for leaks, it was placed in a resistance furnace and the temperature was set at about 440°C (approximately the boiling point of sulfur). The temperature was increased to 800-900°C (above this temperature the sample would be contaminated by the silica tube) after all of the free sulfur was consumed, i.e., after the yellow vapor in the tube disappeared. The reaction was held at this temperature for three to five days. The sample was cooled by air. The products of these reactions were generally polyphasic consisting of higher sulfides coating metal powders. These polyphasic materials were treated either directly or after mixing with other initial products or metals at high temperatures by means of induction heating or arc-melting.

2. Annealing by means of an induction furnace

The technique used to achieve the high-temperature environment (1000°C - 2000°C) has generally been induction heating of a tungsten Knudsen cell in a high vacuum. The reason why tungsten was chosen to be a container in this processing for sulfide preparation is that there are no stable sulfides of tungsten, either solids or gases, at temperature above 900°C in high vacuum. The most serious problem in the synthesis of transition-metal sulfides in a tungsten container is the possible solid solution of transition metals into the solid crucible. For synthesizing ternary metal-rich sulfides in the Ta-Nb-S system

the formation of solid solution of transition metals seems not to be a big problem.

The initial product or a stoichiometrically appropriate mixture of different kinds of initial products and metals was pressed into a pellet in order to improve the contact within the sample and eventually to increase the diffusion rate in the sample. The pellet was placed in a tungsten crucible in an induction furnace. Before the induction furnace was turned on, the residual pressure was lowered below 10^{-5} mmHg using an oil diffusion pump backed by a mechnical pump. The temperature of the crucible was then slowly increased to the desired one and the inductively heated crucible was held at this temperature for the desired time. The temperature of the tungsten crucible was read using a pyrometer. The equilibrium or near equilibrium states achieved at high temperatures were brought to room temperature by rapid cooling of the crucible, primarily by radiative heat loss. Usually after an initial sharp decline it takes about three hours for the crucible to cool to room temperature.

3. Arc-melting

Extremely high temperature (> 2000°C) can be achieved by means of an arc-melter. The advantages of this technique are the very simple principle and direct effect. It has been applied to synthesize many solid state compounds and some compounds, such as $Nb_xTa_{5-x}S_2$ (x \approx 1.72) and $Nb_xTa_{2-x}S$ (x \approx 0.95) can only be prepared using this technique. The reactions are very fast

using this technique and it is especially beneficial for initial studies of solid reactions. The disadvantages of this technique are material losses, especially for volatile elements like sulfur, and possible contaminants. The first disadvantage is overcome by reacting the sulfur with the metals first in a closed system at lower temperature (< 900° C) (as described above) with the addition of a few percent excess of sulfur, and the latter seems not to be a serious problem in the studies of the ternary Ta-Nb-S system.

The initial product, a sample annealed in an induction furnace, or a stoichiometrically appropriate mixture, was pressed into a pellet and placed on a water-cooled cooper hearth in an arc-furnace. The chamber was evacuated and purged with argon several times. Finally argon was filled into the chamber with a pressure greater than 1 atm. to minimize air entering into the chamber. This pressure was maintained through all of the operations, including the final cooling process. The arc was generated by touching the copper hearth with a nonconsumable tungsten electrode, then pointed to a zirconium ball for thirty seconds to getter contaminating gases and thus reduce the possibility of contamination of samples, and finally the arc was pointed to the sample with movement around the sample to heat it evenly. The process of arc-melting the sample lasted for about one minute. To ensure homogeneity of the sample, the arc-melted sample button was turned over, and the above procedure was

repeated at least two times. The sample was cooled by the cooling water running through the copper hearth.

There is a temperature gradient within the arc-melted button generated by the temperature difference between the arc and the water-cooled copper hearth, and additional homogenization reaction (annealing) was usually required. If a small amount of sample (< 2 g) was synthesized once using this technique, the inhomogenity of the sample was not very serious.

There are no known intermetallic compounds of copper with either tantalum or niobium and there is only one known metal-rich sulfide consisting of copper and a VB metal, $Cu_xNb_6S_{3-x}$.⁴⁰ From the experimental results, it could be concluded that copper contamination was not a problem for studies of the Ta-Nb-S system.

B. Characterization Techniques

In this research the characterization techniques used are powder x-ray diffraction, single-crystal x-ray diffraction and energy dispersive analysis by x-rays.

The general pocedures used in this work for the characterization of ternary metal-rich compounds in the Ta-Nb-S system are given below. More specific conditions are considered for each in their respective sections.

1. Powder x-ray diffraction

Guinier powder diffraction was used as the primary characterization method to identify materials, obtain accurate lattice parameters, and estimate the relative yields. This method is known to have a high sensitivity and resolving power and only needs small amounts of sample. An Enraf-Nonius model FR552 Guinier camera and monochromatic Cu K α_1 ($\lambda = 1.5405$ Å) radiation was used. A detailed description of Guinier method can be found in Guinier.⁴⁹

A small amount of well ground sample mixed with NBS silicon (SRM 640) as an internal standard was mounted on a sample holder by 3M tape. Subsequently the sample holder was mounted on a rotating motor to reduce preferred orientation and was exposed to x-rays for two to four hours.

The film obtained was read using an Enraf-Nonius Guinier film reader. The data were converted to 2θ and d-spacing values by calibrating with the known 2θ values of the standard silicon dspacings using the program GUIN.⁵⁰

The 20 values, d-spacings and relative intensities of all reflections of known or postulated structures were calculated using the program PWDR.⁵¹ The powder patterns with the same scale as the experimental ones were generated using the program $PLOT^{52}$ following the above calculations. The powder pattern of the sample was compared with the calculated powder patterns of known or postualted compounds to initially determine whether a

new material had been prepared. However, it should be noted that intensities observed sometimes depend on grinding damage and prefered orientation which are commonly encountered in layered compounds with weak interactions between layers, e.g., van der Waals interactions. Also, intensities of high angle reflections always were weaker than calculated ones.

In cases where known phases were identified, accurate lattice parameters were determined by the least-squares method using the program LATT⁵³ after indices were assigned to the reflections observed in powder diffraction.

2. Single-crystal x-ray diffraction

The powder x-ray diffraction technique served only as a identifying tool, i.e., to find out if known or new phases existed in the sample. When a new phase with new structure type was discovered, the single-crystal x-ray diffraction technique was used to determine its structure. Sometimes the powder x-ray diffraction technique utilizing the Rieveld method, ^{54,55} can also be used to determine simple structure or solve problems with known structure types, but the single-crystal method remains the most efficient tool known today to determine new structures.

Some small pieces thought to be crystals by virtue of having at least one regular and shining face were picked form the sample, dipped in n-butylacetate in a watch glass to separate satellites from the crystals, and then mounted on one end of a glass fiber using EPOXY glue or APIEZON greese. Compounds formed

in the Ta-Nb-S system are not usually air-sensitive. Before intensity data were collected on a single-crystal x-ray diffractometer, it is very helpful to check the quality of the crystal on a Weissenberg camera. If possible, the rotation and Weissenberg photographs of the aligned crystal were taken to obtain the rough cell parameters and to determine the space group of the crystal. A detailed description of rotation and Weissenberg methods can be found in Jeffery.⁵⁶ After the cell parameters and space group had been obtained, it could be reliably known if the crystal of interest had a new structure.

If the structure was a new one and the sample well crystallized, intensity data were collected on a rotating anode RIGAKU AFC6 single-crystal x-ray diffractometer with monochromatic MoK α (λ = 0.71069Å) radiation. The RIGAKU AFC6 single-crystal diffractometer is more automatic and has higher power than other diffractometers. Usual procedures include crystal centering, random search for 15-25 reflections, indexing of reflections obtained to determine primitive cell parameters, reduction of the cell to get the highest lattice symmetry possible, determination of Laue symmetry, collection of intensity data, and psi-scans for empirical absorption corrections.

This diffractometer has accompanying software, TEXSAN⁵⁷ for structure determination. The intensity data were processed with Lorentz-polarization corrections and an empirical absorption using psi-scan data, and then averaged in the proper Laue group.

Space groups were determined using rotation and Weissenberg photographs or the PROCESS program in TEXSAN.

Initial models were obtained by direct methods using SHELXS-86⁵⁸ and subsequent difference-Fourier syntheses of the electron density, or from known isostructure type. The full-matrix leastsquares refinements were used to refine the structure. During the refinement one hundred percent occupancies were assumed for all of the atom positions of metals and nonmetals. The percentage of niobium and tantalum on each metal position was obtained by refering to one hundred percent sulfur occupancies on nonmetal positions. Usually after isotropic least-squares refinement, it was very helpful to apply another empirical absorption correction program, DIFABS⁵⁹ for lowering R-factors. Other procedures were mentioned in detail in respective sections of ternary metal-rich compounds.

3. Electron dispersive analysis by x-rays in SEM

A JEOL JSM-840 scanning electron microscope and a KEVEX EDX system were used for elemental analysis. A qualitative analysis, determining the presence of elements, can be easily done for compounds in the Ta-Nb-S system. For a quantitative EDAX analysis reference materials and a polished surface, i.e., a flat and smooth surface on the sample, were required. A piece of the sample was fixed on a copper tube with EPOXY glue and the sample surface was on the same level as the end of the copper tube holder. The sample surface was then polished on a series of
sandpapers. Finally ash on a cloth was used to polish the sample surface to obtain the analytically required surface. Silver paste was used to electrically connect the sample with the wall of copper holder.

Samples were inspected in the compositional (back scattering) and topological modes to determine where to look for elemental analyses. This technique can easily tell how many phases exist in the sample. However, the ratios of metal and nonmetal were not accurately determined in the Ta-Nb-S system because sulfur is too light compared with either niobium or tantalum. CRYSTAL STRUCTURE OF $Nb_x Ta_{11-x}S_4$ (x \approx 4.92)

A. Preparation and Characterization

The initial reactant, Ta_2S ,¹⁹ was synthesized by heating a mixture of tantalum (Alpha Products, M3N8) and sulfur (Fisher Scientific, lab grade) with a n_{Ta}/n_S ratio of 2 in a previously out-gassed quartz tube, first at 440°C to consume all of the free sulfur, and then at 800°C for three days. Cold pressed samples of Ta_2S and equimolar amounts of niobium (Alpha Products, M2N8) were arc-melted three times in an argon atmosphere. The sample was subsequently annealed for 10h at 1450°C in an inductively heated tungsten crucible. The resultant partially melted sample contained some small needle-like gray-colored crystals in addition to the bulk sample.

The x-ray powder pattern of the sample was very diffuse. If this melted sample was inductively annealed again at a slightly lower temperature (1350°C) for 5h, the powder pattern could be indexed as two phases, $Nb_xTa_{11-x}S_4$ [31.200(5), 3.3507(7), 9.592(2)Å, Pnma] and a 2s- $Nb_{1+x}S_2^{60}$ -type compound, according to the two-theta angles calculated with program PWDR⁵¹ (using data from the structure solution for $Nb_xTa_{11-x}S_4$ (x \approx 4.92)). The main product in this sample was $Nb_xTa_{11-x}S_4$ (x \approx 4.92). In the diffuse pattern (only annealed at 1425°C) some reflections had originally been thought to belong to $Nb_xTa_{11-x}S_4$ (x \approx 4.92), with

the cell parameters determined to be 31.19(1), 3.350(1) and 9.602(6)Å. After the Nb_xTa_{2-x}S (Ta₂Se³¹-type) phase was found, it was determined that the reflections in the diffuse pattern of the melted sample belong to Nb_xTa_{2-x}S (Ta₂Se-type). The critical temperature below which Nb_xTa_{11-x}S₄ is stable and above which Nb_xTa_{2-x}S (Ta₂Se-type) is stable is close to 1425°C. Although the reflections in the diffuse pattern of the melted sample belong primarily to Nb_xTa_{2-x}S (Ta₂Se-type), there were small amounts of Nb_xTa_{11-x}S₄ in the melted sample because 1425°C is close to that critical temperature. Powder diffraction data for Nb_xTa_{11-x}S₄ (x = 4.92) are presented in Table 2. Intensities were calculated using the computer program PWDR. Positional parameters were used from the refined structure.

A crystal from this sample was examined by electron dispersive analysis by x-rays (EDAX) in a scanning electron microscope, and the composition of this crystal was obtained as follows: S, 27.75 at.%; Nb, 32.24 at.% and Ta, 40.01 at.% (Nb4.65^{Ta}5.77^S4).

After the structure and composition of $Nb_{4.92}Ta_{6.08}S_4$ were determined, an attempt was made to synthesize the title compound starting with the elements. A mixture of tantalum, niobium and sulfur $(n_{Ta}:n_{Nb}:n_{S} \approx 6:5:4)$ was heated at 440°C in a previously out-gassed quartz tube until the yellow color of free sulfur disappeared. The temperature was increased to 800°C and the sample was held at this temperature for 3 days. The mixture was

	 Le	1	28	28	та	Ť
	~	±	²⁰ obs	Calc	-obs	<u> </u>
2	0	0	5.58	5.66	MS	36.7
1	0	1	9.57	9.64	W	9.2
2	0	1	10.74	10.82	М	13.4
3	0	1	12.48	12.54	MS	27.0
4	0	1	14.60	14.62	VW	1.8
6	0	2	25.27	25.24	VW	0.7
1	0	3	27.87	28.03	VW	0.2
3	1	1	29.46	29.49	W .	1.0
4	1	1	30.42	30.46	VW	0.6
5	1	1	31.66	31.68	MW	5.7
9	0	2	31.80	31.82	м	18.4
1	1	2	32.68	32.70	м	10.0
2	1	2	33.05	33.08	MS	19.9
10	0	2	34.23	34.25	м	9.3
12	0	0	34.39	34.45	VW	0.3
7	1	1	34.74	34.74	м	12.7
8	0	3	36.29	36.30	S	39.9
8	1	1	36.53	36.54	м	13.7
9	0	3	38.23	38.26	м	22.7
9	1	1	38.48	38.49	м	12.2
1	1	3	38.98	39.01	S	48.9
10	1	0	39.38	39.42	vvs	100.0
10	0	3	40.37	40.35	W	4.2
10	1	1	40.61	40.57	MW	6.9
6	0	4	41.40	41.43	W	7.5
5	1	3	41.60	41.60	VW	3.8
11	0	3	42.45	42.56	W	8.4
15	0	1	44.54	44.52	WV	3.2

Table 2 X-ray powder diffraction of $Nb_xTa_{11-x}S_4$ (x ~ 4.92) (Cu K α_1 radiation)

a V, very; W, weak; M, medium; S, strong.

hk1 $2\theta_{obs}$ $2\theta_{calc}$ I_{obs}^{b} I_{cal} 120344.8944.89M13.9160046.5246.52W3.441448.0648.05VW1.640548.8548.85W2.0140349.8949.82VW0.4170150.5850.58W2.9150352.4052.42VW0.9180153.6653.67W5.102054.7354.74S29.0190156.8256.81W4.510657.6857.69W2.830658.3258.35W4.9200160.0260.01W2.560660.5560.54VW1.6131461.1561.18VW1.6							
12 0 3 44.89 44.89 M 13.9 16 0 0 46.52 46.52 W 3.4 4 1 4 48.06 48.05 VW 1.6 4 0 5 48.85 48.85 W 2.0 14 0 3 49.89 49.82 VW 0.4 17 0 1 50.58 W 2.9 9 15 0 3 52.40 52.42 VW 0.9 18 0 1 53.66 53.67 W 5.1 0 2 0 54.73 54.74 S 29.0 19 0 1 56.82 56.81 W 4.5 3 0 6 58.32 58.35 W 4.5 20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.6 13 1 4 61.15 61.18 <th><u>h</u></th> <th>k</th> <th>1</th> <th>20_{obs}</th> <th>20_{calc}</th> <th>Iobs</th> <th>Icalc</th>	<u>h</u>	k	1	20 _{obs}	20 _{calc}	Iobs	Icalc
16 0 0 46.52 46.52 W 3.4 4 1 4 48.06 48.05 VW 1.6 4 0 5 48.85 48.85 W 2.0 14 0 3 49.89 49.82 VW 0.4 17 0 1 50.58 S0.58 W 2.9 15 0 3 52.40 52.42 VW 0.9 18 0 1 53.66 53.67 W 5.1 0 2 0 54.73 54.74 S 29.0 19 0 1 56.82 56.81 w 4.5 1 0 6 57.68 57.69 W 2.8 3 0 6 58.32 58.35 W 4.9 20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.6 13 1 4 61.15 61.18<	12	0	3	44.89	44.89	м	13.9
4 1 4 48.06 48.05 VW 1.6 4 0 5 48.85 48.85 W 2.0 14 0 3 49.89 49.82 VW 0.4 17 0 1 50.58 50.58 W 2.9 15 0 3 52.40 52.42 VW 0.9 18 0 1 53.66 53.67 W 5.1 0 2 0 54.73 54.74 S 29.0 19 0 1 56.82 56.81 w 4.5 20 0 59.17 59.15 W 6.0 20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.6 13 1 4 61.15 61.18 VW 1.6	16	0	0	46.52	46.52	W	3.4
4 0 5 48.85 48.85 W 2.0 14 0 3 49.89 49.82 VW 0.4 17 0 1 50.58 50.58 W 2.9 15 0 3 52.40 52.42 VW 0.9 18 0 1 53.66 53.67 W 5.1 0 2 0 54.73 54.74 S 29.0 19 0 1 56.82 56.81 w 4.5 1 0 6 57.68 57.69 W 2.8 20 0 0 59.17 59.15 W 6.0 20 0 1 60.02 60.01 W 2.9 6 0 6 60.55 60.54 VW 1.9 13 1 4 61.15 61.18 VW 1.6	4	1	4	48.06	48.05	VW	1.6
14 0 3 49.89 49.82 VW 0.4 17 0 1 50.58 50.58 W 2.9 15 0 3 52.40 52.42 VW 0.9 18 0 1 53.66 53.67 W 5.1 0 2 0 54.73 54.74 S 29.0 19 0 1 56.82 56.81 w 4.5 1 0 6 57.68 57.69 W 2.8 3 0 6 58.32 58.35 W 4.9 20 0 0 59.17 59.15 W 6.0 20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.9 13 1 4 61.15 61.18 VW 1.6	4	0	5	48.85	48.85	W	2.0
17 0 1 50.58 W 2.9 15 0 3 52.40 52.42 VW 0.9 18 0 1 53.66 53.67 W 5.1 0 2 0 54.73 54.74 S 29.0 19 0 1 56.82 56.81 W 4.5 1 0 6 57.68 57.69 W 2.8 3 0 6 58.32 58.35 W 4.9 20 0 1 60.02 60.01 W 2.9 6 0 6 60.55 60.54 VW 1.9 13 1 4 61.15 61.18 VW 1.6	14	0	3	49.89	49.82	VW	0.4
15 0 3 52.40 52.42 VW 0.9 18 0 1 53.66 53.67 W 5.1 0 2 0 54.73 54.74 S 29.0 19 0 1 56.82 56.81 w 4.5 1 0 6 57.68 57.69 W 2.8 3 0 6 58.32 58.35 W 4.9 20 0 1 60.02 60.01 W 2.8 6 0 6 60.55 60.54 VW 1.9 13 1 4 61.15 61.18 VW 1.6	17	0	1	50.58	50.58	W	2.9
18 0 1 53.66 53.67 W 5.1 0 2 0 54.73 54.74 S 29.0 19 0 1 56.82 56.81 W 4.5 1 0 6 57.68 57.69 W 2.8 3 0 6 58.32 58.35 W 4.9 20 0 0 59.17 59.15 W 6.0 20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.9 13 1 4 61.15 61.18 VW 1.6	15	0	3	52.40	52.42	VW	0.9
0 2 0 54.73 54.74 S 29.0 19 0 1 56.82 56.81 w 4.5 1 0 6 57.68 57.69 W 2.8 3 0 6 58.32 58.35 W 4.9 20 0 0 59.17 59.15 W 6.0 20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.6 13 1 4 61.15 61.18 VW 1.6	18	0	1	53.66	53.67	W	5.1
19 0 1 56.82 56.81 w 4.5 1 0 6 57.68 57.69 W 2.8 3 0 6 58.32 58.35 W 4.9 20 0 0 59.17 59.15 W 6.0 20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.9 13 1 4 61.15 61.18 VW 1.6	0	2	0	54.73	54.74	S	29.0
1 0 6 57.68 57.69 W 2.8 3 0 6 58.32 58.35 W 4.9 20 0 0 59.17 59.15 W 6.0 20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.9 13 1 4 61.15 61.18 VW 1.6	19	0	1	56.82	56.81	w	4.5
3 0 6 58.32 58.35 W 4.9 20 0 0 59.17 59.15 W 6.0 20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.5 13 1 4 61.15 61.18 VW 1.6	1	0	6	57.68	57.69	w	2.8
20 0 0 59.17 59.15 W 6.0 20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.5 13 1 4 61.15 61.18 VW 1.6	3	0	6	58.32	58.35	W	4.9
20 0 1 60.02 60.01 W 2.5 6 0 6 60.55 60.54 VW 1.5 13 1 4 61.15 61.18 VW 1.6	20	0	0	59.17	59.15	W	6.0
6 0 6 60.55 60.54 VW 1.9 13 1 4 61.15 61.18 VW 1.6	20	0	1	60.02	60 [.] 01	W	2.5
13 1 4 61.15 61.18 VW 1.6	6	0	6	60.55	60.54	VW	1.9
	13	1	4	61.15	61.18	VW	1.6

•••

.....

Table 2 (continued)

.

.

.

arc-melted and then inductively annealed at 1250°C for 11h. The total mass loss after these processes was less than 0.5%. From comparison of the powder pattern of the final product with standard one of $Nb_{4.92}Ta_{6.08}S_4$ calculated using program PWDR, it is certain that almost all of the sample is $Nb_{4.92}Ta_{6.08}S_4$.

B. Single Crystal X-Ray Investigations

Some needle-like single crystals were selected from the gray colored product annealed at $1425^{\circ}C$ and examined by a Weissenberg camera. The needle shaped crystal was easily aligned with the longest edge parallel to the rotating axis. From the rotation and Weissenberg patterns of several such crystals it was found that there were two kinds of crystals in the sample, $Ta_{6-x}Nb_xS$ (C 2/c, 14.1214(168), 5.2849(41), 14.8331(182)Å, $\beta = 117.97^{\circ}$ (5)) and $Ta_{6.08}Nb_{4.92}S_4$.

From preliminary Weissenberg and rotation photographs of $Nb_xTa_{11-x}S_4$ the conditions limiting the possible reflections were observed to be as follows: hkl, no conditions; 0kl, k + l = 2n; h0l, no conditions; hk0, h = 2n; h00, h = 2n; 00l, l = 2n. These conditions indicate two possible space groups, Pna2₁ and Pnma, differing by a center of symmetry.

Intensity data for a $Nb_xTa_{11-x}S_4$ crystal (0.5x0.02x0.01mm³) were collected using a RIGAKU AFC6 single-crystal diffractometer and monochromated Mo K α radiation, employing the ω scan technique up to 60° (20). From the total 3473 reflections (hkl, -hkl), 929 independent reflections with $F^2 > 3\sigma(F_0^2)$ were obtained and used for structure analysis. The observed intensities were corrected for Lorentz-polarization and absorption effects. No remarkable decay was observed during the data collection.

This structure was determined using program TEXSAN. First the empirical absorption correction was applied with an absorption coefficient (μ (Mo K α)) being 711.53 cm⁻¹. The averaging of all F_o values of Ta_{6.08}Nb_{4.92}S₄ according to Pnma symmetry gave an internal factor R = 0.164 (including all reflections). Application of the direct method resulted in an electron map containing several strong peaks per asymmetric unit on the y = 1/4 section. These peaks were assigned as Ta and the refinement was initiated. After the refinement had converged for this trial structure, a difference Fourier map was calculated. From the difference Fourier map, some strong peaks were found and they were assigned as Ta. The above processes were then repeated. Finally, eleven metal positions and four sulfur positions were found. The distances and coordinations were chemically reasonable, e.g., by comparison with $Nb_{21}s_8^{10}$ and $Nb_{14}S_5.^{11}$

The occupancies of the tantalum positions were then refined. From the calculated occupancies a rough combination of niobium and tantalum at each position was assumed and assigned on each metal position, and then the occupancies for the metal positions

were refined by fixing the total occupancy at each position as 1. After this refinement had converged the isotropic temperature factors were refined with a secondary extinction correction applied (secondary extinction coefficient is 1.22405×10^{-7}).

 F_o values of $Ta_{6.08}Nb_{4.92}S_4$ were corrected for absorption effects with the program DIFABS⁵⁹ in the mode that utilizes θ dependent systematic deviations $|F_o| - |F_c|$. After this correction, the R and R_w dropped from 0.066 and 0.099 to 0.056 and 0.063, respectively, in isotropic refinement. The F_c values which entered into the calculations were obtained from refinement of the positional and isotropic thermal parameters in Pnma.

The anisotropic refinement was carried out, but it was not successful since some anisotropic thermal parameters were nonpositive definite. The refinement of the structure is complicated by the fact that the temperature factor at each position correlates with the occupancy of tantalum and niobium at that position.

The occupancy of tantalum and niobium at each metallic position was, therefore, changed arbitrarily to make as many anisotropic temperature factors positive as possible. R = 0.051and $R_w = 0.068$ were finally obtained from the anisotropic refinement with the nonpositive-definite anisotropic temperature factors at the S1, S3 and S4 position. Information concerning the refinement is in Table 3. The final composition $Ta_{6.08}Nb_{4.92}S_4$ was obtained from the refinement. The atomic

Table 3 Crystal data for $Nb_xTa_{11-x}S_4$ (x = 4.92)

Formula	^{Nb} 4.92 ^{Ta} 6.08 ^S 4
Space group	Pnma (#62)
a, Å	31.210(5) ^a
b, Å	3.3507(6) ^a
c, Å -	9.592(2) ^a
z	4
d _{calc} , g/cm ³	11.160
Crystal size, mm ³	0.02x0.01x0.5
μ (MoK _{α}), cm ⁻¹	711.53
Data collection instrument	RIGAKU AFC6
Radiation (monochromated in	
incident beam)	Mo K _{α} (λ = 0.71069 Å)
Orientation reflections,	
number, range (20)	25,14-35
Temperature, [°] C	22
Scan method	ω
Octants measured	hkl,-hkl
Data collection range, 2θ , deg	0-60
No. refl. measured	3473
No. unique data, total	•
with $F_0^2 > 3\sigma(F_0^2)$	929
No. parameters refined	103
Secondary ext. coeff. (10^{-7})	1.224
Trans. factors, max., min.	1.000,0.376
R ^b , R _w ^c , GOF ^d	0.051, 0.068, 1.71
Largest shift/esd, final cycle	0.00
Largest peak, e/Å ³	4.74 (1.79Å, M4)

a obtained from indexing of the powder pattern. b $R = \Sigma ||_{F_0} - |_{F_c} |/\Sigma|_{F_0}|.$ c $R_w = [\Sigmaw(|_{F_0}| - |_{F_c}|)^2 / \Sigmaw|_{F_0}|^2]^{1/2}; w = 1/\sigma^2(|_{F_0}|).$ d $GOF = \Sigma((|_{F_0}| - |_{F_c}|) / \sigma_i) / (N_{obs} - N_{parameters}).$ positions, occupancies and isotropic temperature factors at each position are given in Table 4. The failure of anisotropic refinement may have arisen from the quality of the crystal. The powder pattern of the sample from which the crystals were selected was diffuse, i.e., the sample was not well crystallized. Observed and calculated structure factors are listed in Appendix A.

C. Results and Discussions

Figures 1 and 2 show the structure of $Nb_xTa_{11-x}S_4$. The coordinations of the sulfur and metal atoms in this compound are similar to those found in a broad class of transition metal compounds in which atoms are located in mirror planes perpendicular to short (about 3.5Å) axes. Some examples of compounds belonging to this class are Nb₂₁S₈,¹⁰ Nb₁₄S₅,¹¹ Ti₂S,⁶ Nb₇P₄,¹⁶ Nb₅P₃,¹⁷ Ta₂P¹³ and Co₂P.⁶¹ The metallic coordinations are capped, distorted cubic prismatic. The coordination of sulfur is capped trigonal prismatic. The distorted cubic prisms of M1, M2 and M4 contain only metal atoms. The capping atoms of the distorted cubic prism for M1 are M5, M8, M10 and S2. For other metal positions the distorted cubic prisms are partially substituted by sulfur, so there is more distortion for this kind of distorted cubic prism, e.g., two S4 occupy two corners of the distorted cubic prism for M3. The structure can be thought of as

Atom	0	ccu	pa	ncy		x		У	Z		B _{iso} (Å ²)
м1	76%	Та	+	24%	Nb	0.2177	(1)	1/4	0.5355	(2)	0.27 (7)
M2	76%	Та	+	24%	Nb	0.3268	(1)	1/4	0.8482	(2)	0.24 (7)
мз	72%	та	+	28%	Nb	0.4247	(1)	1/4	0.7579	(2)	0.32 (7)
M4	70%	Та	+	30%	Nb	0.0254	(1)	1/4	0.0853	(2)	0.26 (7)
м5	66%	та	+	34%	Nb	0.2357	(1)	1/4	0.2166	(2)	0.27 (7)
M6	54%	та	+	46%	Nb	0.3401	(1)	1/4	0.1834	(2)	0.31 (8)
M7	50%	та	+	50%	Nb	0.4207	(1)	1/4	0.4183	(2)	0.30 (8)
M8	48%	та	+	52 %	Nb	0.2150	(1)	1/4	0.8917	(2)	0.32 (8)
м9	468	та	+	54%	Nb	0.1350	(1)	1/4	0.1206	(2)	0.28 (8)
M10	44%	Та	+	56%	Nb	0.1102	(1)	1/4	0.4761	(2)	0.30 (9)
M11	68	та	+	94%	Nb	0.0233	(1)	1/4	0.7255	(3)	0.4 (1)
S1						0.4200	(4)	1/4	0.153	(1)	0.6 (4)
S2						0.3044	(4)	1/4	0.580	(1)	0.6 (4)
S 3						0.1367	(3)	1/4	0.865	(1)	0.3 (3)
S4						0.0296	(3)	1/4	0.380	(1)	0.6 (4)

.

Table 4 Positional, thermal parameters and occupancies for $Mb_xTa_{11x}S_4$ (x \approx 4.92)

Figure 1 The crystal structure of $Nb_xTa_{11-x}S_4$ viewed along the b-axis. Unit cell is marked by solid lines

Figure 2 The projection of $Nb_xTa_{11-x}S_4$ on the xz-plane. Unit cell is marked by solid lines

a strongly modified bcc metal structure. The fragments of modified bcc metal networks can be easily recognized from Figure 2.

In the structure of $Nb_xTa_{11-x}S_4$ (x ≈ 4.92) each metal position is fractionally occupied by niobium and tantalum and the metal positions have been labeled so that as the metal indicator increases, the n_{Nb}/n_{Ta} ratio on that position also increases, i.e., from M1 to M11 the n_{Nb}/n_{Ta} ratio on the metal position increases. The number of coordinating sulfur increases from M1 to M11, i.e., the more niobium on the metal position, the more sulfur bound to that metal position.

It is easy to recognize that the coordination of S2 is bicapped trigonal prismatic. The coordination polyhedra of S1 and S3 are trigonal prisms that are bisected by the mirror plane vertically rather than horizontally. The coordination of S4 is interesting and is shown in Figure 3. The coordination of S4 may be thought of as a trigonal prismatic with two of the six corners missing. This is similar to that of sulfur in Ta_2S .¹⁹ The coordination of S4 is the typical case of the lower coordinated sulfur atoms in metal-rich compounds, i.e., there apparently are some structurally significant nonbonding orbitals on S giving rise to an incomplete trigonal prism. It can be seen that the

resulting van der Waals interactions lead to a void region surrounded by these atoms.

The shortest metal-metal distance in this compound is 2.82Å. There is no doubt that there are numerous strong metal-metal interactions in this solid. Table 5 gives the interatomic distances for $Ta_{6.08}Nb_{4.92}S_4$. If only distances less than 3.30Å (for S-S only distance less than 3.00Å) are considered, the metallic coordination number ranges from 9 to 12 and that for sulfur from 6 to 8.

In the structures of the tantalum-rich and niobium-rich sulfides there are pentagonal antiprisms or prisms. In the structure of this ternary (TaNb)-rich sulfide there are neither pentagonal prisms nor antiprisms. It is surprising that although the molar ratio of tantalum to niobium in this compound is larger than 1, the structure of this compound is more similar to that in the niobium-rich sulfides than to that in the tantalum-rich sulfides, e.g., there is a short axis (about 3.50Å) and the metallic coordinations are distorted cubic prismatic. Attempts were made to synthesize $Ta_{11}S_4$ and $Nb_{11}S_4$; but they failed and the products were β -Ta₆S²¹ and Ta₂S¹⁹ in the case of "Ta₁₁S₄", and Nb₂₁S₈¹⁰ in the case of "Nb₁₁S₄".

330) pm, M-	-S < 300 pm)	x1	1-x-4 \		
S2	1 ^a	274 (1)	M5	S2	2	247.1 (8)
м5	2	281.8 (2)		Ml	2	281.8 (2)
M2	2	282.1 (2)		M8	2	282.7 (2)
м6	2	284.0 (2)		M2	2	286.4 (2)
M8	2	302.0 (3)		Ml	1	311.0 (2)
M5	1	311.0 (3)		M8	1	318.3 (3)
				M6	1	327.3 (3)
S2	1	267 (1)		M9	1	327.6 (3)
M1	2	282.1 (2)				
M10	2	286.1 (3)	M6	S1	1	251 (1)
M5	2	286.4 (2)		S 3	2	252.5 (7)
м9	2	299.9 (2)		M1	2	284.0 (2)
мз	1	317.7 (3)		M10	2	302.8 (3)
M6	1	324.2 (3)		M8	2	312.4 (3)
				M2	1	324.2 (2)
S4	2	249.2 (8)		M5	1	327.3 (3)
M4	2	282.4 (2)				
м9	2	283.1 (3)	M7	S 3	2	250.6 (8)
M10	2	289.4 (3)		S1	1	254 (1)
M11	1	308.0 (4)		M4	2	286.4 (2)
M2	1	317.7 (2)		M11	2	304.7 (4)

2

1

1

1

2

2

2

м9

ΜЗ

М4

S3

S2

М5

м1

M8

309.8 (3)

326.0 (2)

326.7 (3)

246 (1)

253.5 (8)

282.7 (2)

302.0 (2)

Table 5 Interatomic distances (pm) for Nb. Tata SA (X ≈ 4.92) (M-M <

a number of neighbors.

1

2

2

1

2

2

1

М7

ΜЗ

M4

S4

М7

M11

M7

326.0 (3)

282.4 (2)

282.8 (3)

286.4 (3)

289.9 (3)

326.7 (3)

283 (1)

м1

M2

ΜЗ

М4

Table	5 (co	ntinued)				
	м6	2	312.4 (2)		M1	1	274 (1)
	м5	1	318.3 (2)				
			•	S 3	м9	1	245.0 (9)
м9	S 3	1	245.0 (9)		M8	1	246 (1)
	S2	2	255.6 (9)		м7	2	250.6 (7)
	мз	2	283.1 (2)		M6	2	252.5 (7)
	M2	2	299.9 (2)				
	M7	2	309.8 (2)	S4	МЗ	2	249.2 (8)
	M5	1	327.6 (2)		M11	2	256.0 (8)
					M10	1	268 (1)
M1.0	S1	2	256.5 (8)		M4	1	283 (1)
	S4	1	268 (1)				
	M2	2	286.1 (2)				
	мз	2	289.4 (2)				
	M6	2	302.8 (2)				
M11	S 1	2	253.4 (9)				
	54	2	256.0 (8)				
	M4	2	289.9 (3)				
	M7	2	304.7 (3)				
	мз	1	308.0 (4)				
S1	мб	1	251 (1)				
02	M1 1	2	253.4 (8)				
	м7	-	254 (1)				
	M10	2	256.5 (8)				
S2	м5	2	247.1 (8)				·
	M8	2	253.5 (8)				
	м9	2	255.6 (9)				
	M2	1	267 (1)				

.

.

.

CRYSTAL STRUCTURE OF $Nb_{12-x}Ta_xS_4$ (x = 5.26)

A. Preparation and Characterization

High purity tantalum, niobium (Alpha Products) and sulfur (Fisher Scientific Co.) were put into a previously out-gassed silica tube at the molar ratio: $n_{Ta}:n_{Nb}:n_S = 6:12:7$ and were heated at 440°C until all of sulfur was consumed and then were held at 850°C for ten days. After being pressed into a pellet, the sample was annealed in a tungsten crucible at 1360°C for 16h in an induction furnace. The resultant partially melted sample contained some gray-colored crystals in addition to the bulk sample.

The Guinier x-ray powder pattern indicated that a new phase coexisted along with $Nb_{21-x}Ta_xS_8$ ($Nb_{21}S_8^{10}$ -type); (I4/m, a = 16.8237(31), c = 3.3428(7)Å). The reflections in the powder pattern, except for those belonging to $Nb_{21-x}Ta_xS_8$, could be indexed as $Nb_{6.74}Ta_{5.26}S_4$ (9.5912(26), 3.3637(10), 32.8251(74)Å, Pnma) according to the two-theta angles calculated with program PWDR (using data from the structure solution for $Nb_{6.74}Ta_{5.26}S_4$). Powder diffraction angles 20 < 55°, estimated and relative intensities of $Nb_{6.74}Ta_{5.26}S_4$ calculated using the computer program PWDR (positional parameters used from the refined structure) are listed in Table 6.

radiation) ^{a} (20 < 55°)				
1	20 _{obs}	20calc	I obs	^I calc
2	5.39	5.38	W	18
1	9.64	9.60	м	42
4	14.18	14.19	W	9
4	29.9 9	29.97	W	6
4	30.15	30.16	W	6
5		31.09		5
2 10	32.94	32.95 33.04	MC	5 7
3	33.55	33.53	W	13.
7	33.92	33.91	м	24
5 11	35.35	35.31 35.40	M	25 21
8	35.57	35, 58	W	11

36.30

36.50

37.53

37.83

38.36

38.93

39.10

39.23 39.31

39.46

39.72

40.37

• 56

М

W

W

sc

W

М

S

S

W

W

Table 6 X-rey powder diffraction of $Nb_{12-x}Ta_xS_4$ (x ≈ 5.26) (Cu K α_1 radiation)^a (20 < 55°)

^a 20 values of reflections with relative intensities $I_{calc} \ge 5$ are listed.

^b W, weak; M, medium; S, strong.

k

Ō

h

^c Reflections also belong to $Nb_{21-x}Ta_xS_8$.

36.29

36.50

37.50

37.86

38.36

38.91

39.22

39.46

39.72

		-	·			
h	k	1	20 _{obs}	20calc	I _{obs} b	^I calc
2	1	9	. 41.03	41.03	W	12
3	0	11		41.35		6
1	1	11	41.47	41.50	W	12
4	0	7	42.33	42.30	м	21
1	0	15	42.33	42.33	W	9
4	0	8	43.77	43.69	W	20
2	0	15	45.56	45.52	W	5
5	0	3	48.12	48.12	W	6
1	0	18	50.91	50.93	W	5
5	0	8	52.60	52.62	W	5
1	0	19	53.90	53.87	W	7
0	2	0	54.53	54.51	м	41

.

.

Table 6 (continued)

.

.

.

A crystal of $Nb_{6.74}Ta_{5.26}S_4$ from this sample was examined by electron dispersive analysis by x-rays (EDAX) in a scanning electron microscope, and the composition of this crystal was determined to be as follows: S, 24.46 at.%; Nb, 49.35 at% and Ta, 26.19 at.% (Nb_{8.07}Ta_{4.28}S₄).

After the structure was solved and the composition of the title compound was known, an attempt was made to synthesize the title compound by using Ta₆S, "Nb₂S" or "Nb_{1 5}S" (there is no compound known with either the formula Nb2S or the formula $Nb_{1,5}S$) and Nb as initial reactants. The initial reactant, Ta_6S , was synthesized by heating the mixture of tantalum (Alpha Products, M3N8) and sulfur (Fisher Scientific, lab grade) with the n_{Ta}/n_S ratio of 6 first at 440 $^\circ$ C in a previously out-gassed quartz tube to consume all of free sulfur, and then at 860° C for one week. "Nb₂S" and "Nb_{1.5}S" were synthesized using a similiar method. The stoichiometrically appropriate mixture of Ta₆S, "Nb₂S" or "Nb_{1.5}S" and Nb was pressed into a pellet and arcmelted three times in an argon atmosphere. The total mass loss after the arc-melting process was less than 0.6%. From comparison of the powder pattern of the final product with that of the Nb_{6.74}Ta_{5.26}S₄ standard calculated using program POWDER, it is certain that major product in the sample is $Nb_{12-x}Ta_xS_4$.

B. Single Crystal X-ray Investigation

There were two kinds of crystals in the annealed sample $("Nb_{12}Ta_6S_7")$. The thin needle-like crystals of $Nb_{6.74}Ta_{5.26}S_4$ could easily be distinguished from the larger trapezoidal-shaped $Nb_{21-x}Ta_xS_8$ crystal. A gray-colored crystal $(0.02\times0.02\times0.35\text{mm}^3)$ of the new compound was selected from the nearly melted sample and was examined using Cu K α radiation on a Weissenberg camera. The needle shaped crystal was easily aligned with the longest edge parallel to the rotating axis.

Oscillation and Weissenberg photographs from the crystal, rotated along the b-axis (shortest axis), showed the following systematic extinctions: 0kl, k + 1 = 2n, hk0, h = 2n; h00, h = 2n; 00l, 1 = 2n. These conditions correspond to two possible space groups, $Pna2_1$, and Pnma, differing by a center of symmetry. The shortest axis corresponds to the b-axis, while longest one corresponds to the c-axis.

This crystal was placed on a RIGAKU AFC6 single-crystal diffractometer, and intensity data were collected using monochromatic Mo K α radiation, employing the ω scan technique up to 60° (20). A total of 3943 (hkl, hk-l) reflections were monitored, and 721 unique reflections with $F^2 > 2\sigma(F_0^2)$ were obtained and used for structure determination. The observed intensities were corrected for Lorentz-polarization and absorption effects with an absorption coefficient of 611.61cm⁻¹.

Based on three standard reflections that were measured every 150 reflections there was no significant fluctuation or decay of the crystal. Subsequent data processing and structure calculations were performed with the program package TEXSAN.

The structure was solved by direct methods in the centrosymmetric space group Pnma. First the empirical absorption correction was applied with the max. and min. transmission factors of 1.000 and 0.767, respectively. Application of the direct method resulted in an electron map containing several strong peaks per asymmetric unit on the y = 1/4 section. These peaks were assigned as Ta and the refinement was initiated. More metal positions were then obtained from a subsequent difference-Fourier syntheses of the electron density after initial refinements, and they were assigned as Ta or S depending on the peak height and the distance to known atom positions. The above processes were then repeated. Finally, twelve metal positions and four sulfur positions were found. The distances and coordinations were chemically reasonable, e.g., by comparison with $Nb_{21}S_8^{10}$ and $Nb_{14}S_5^{11}$.

First the structure was solved and the composition was determined to be $Nb_{8.08}Ta_{3.92}S_4$ using the following procedures: a. after twelve metal positions and four sulfur positions had been found, the metal positions were assigned as Ta and the occupancies of Ta were refined, b. according to the refinement result and the atomic numbers of Nb and Ta, the percentage of Ta

and Nb was assigned to each metal position, c. isotropic refinement was done with concomitant refinement of the secondary extinction coefficient while the multiplicities of Ta and Nb were fixed on each metal position, d. the multiplicity on each metal position was changed so as to make the overall thermal parameters as positive and as nearly equal as possible, while 100% occupation was assumed for each position. Finally R, R_w and GOP were obtained as 0.059, 0.062 and 1.393; respectively. The isotropic parameters are similiar in value and range from 0.26 to 0.41 for metals, from 0.4 to 0.8 for sulfur; respectively. However, anisotropic refinement was not successful.

Another approach to solve this structure was also applied and the composition was determined to be $Nb_{6.74}Ta_{5.26}S_4$. The procedure was as follows: a. after twelve metal positions and four sulfur positions had been found, the multiplicities for twelve metal positions were refined after the assignment of 50% Ta and 50% Nb for each metal position, b. the isotropic refinement was done for the twelve metal positions and four sulfur positions with concomitant refinement of the secondary extinction coefficient while the multiplicities for metal positions were fixed, c. the isotropic refinement was then done again while the multiplicities for metal positions were allowed to vary, d. the isotropic refinement, the multiplicities for the twelve metal positions and the second extinction coefficient were refined at the same time. Finally R, R_w and GOP were obtained as

0.059, 0.066 and 1.31; respectively. However, the anisotropic refinement still was not successful. The B's differ very much for different atoms. The refinement of the structure is complicated by the fact that the temperature factor at each position correlates with the occupancy of Ta and Nb at that position. Another complication may be the disorder in the solid since the sample was heated at high temperature and nearly melted.

In the first calculation the physically reasonable, but nonetheless subjective, assumption of equal atomic thermal parameters is made. The second calculation is objective in the sense that no apriori physical restaint is assumed. In either case the calculated $n_{\rm Nb}/n_{\rm Ta}$ ratio is within the range determined in this work (Section on the discussions of the metal-rich region in the ternary Ta-Nb-S system) and in both cases the $n_{\rm Nb}/n_{\rm Ta}$ ratio increases with the S coordination number of the site. Thus the subjective and the objective calculations both result in the same conclusions as drawn in this study. The choice between these two calculations is a matter of personal preference, and the results of the objective calculations are arbitrarily chosen as the best results.

Information concerning the refinement is in Table 7. The atomic positions, multiplicities and isotropic temperature factors at each position are given in Table 8. The interatomic distances for $Nb_{6,74}Ta_{5,26}S_4$ are given in Table 9.

```
Nb6.74<sup>Ta</sup>5.26<sup>S</sup>4
Formula
                                                     Pnma (#62)
Space group
                                                     9.5911(26)<sup>a</sup>
a, Å
b, Å
                                                     3.3637(10)<sup>a</sup>
c, Å
                                                     32.8251 (74)<sup>a</sup>
z
                                                     4
d<sub>calc</sub>, g/cm<sup>3</sup>
                                                     10.752
Crystal size, mm<sup>3</sup>
                                                     0.02 \times 0.02 \times 0.35
\mu (MoK<sub>\alpha</sub>), cm<sup>-1</sup>
                                                     611.61
                                                     RIGAKU AFC6
Data collection instrument
Radiation (monochromated in
                                                    Mo K_{\alpha} (\lambda = 0.71069 Å)
   incident beam)
Orientation reflections,
   number, range (2\theta)
                                                     25,14-35
Temperature, °C
                                                     22
Scan method
                                                     ω
                                                     hkl, hk-1
Octants measured
Data collection range, 2\theta, deg
                                                     0-60
No. refl. measured
                                                     3493
No. unique data, total
  with F_0^2 > 2\sigma (F_0^2)
                                                     704
No. parameters refined
                                                     62
Trans. factors, max., min.
                                                     1.000,0.767
Secondary ext. coeff. (10^{-7})
                                                     1.292
R<sup>b</sup>, R, C, GOF<sup>d</sup>
                                                     0.059, 0.065, 1.292
Largest shift/esd, final cycle
                                                     0.00
Largest peak, e/Å<sup>3</sup>
                                                     6.35 (0.48Å, M8)
```

a obtained from indexing of the powder pattern. b $R = \Sigma ||_{F_0} - |_{F_C} |/\Sigma|_{F_0} |$. c $R_w = [\Sigma_w(|_{F_0}| - |_{F_C}|)^2 / \Sigma_w|_{F_0}|^2]^{1/2}; w = 1/\sigma^2(|_{F_0}|).$ d $GOF = \Sigma((|_{F_0}| - |_{F_C}|) / \sigma_1) / (N_{obs} - N_{parameters}).$

(=			
Occupancy	x	Z	B _{iso} (Å ²)
72.64% Ta + 27.36% Nb	0.3715 (3)	0.0726 (1)	0.27 (7)
72.54% Ta + 27.46% Nb	0.4914 (3)	0.8706 (1)	0.54 (8)
67.82% Ta + 32.18% Nb	0.4383 (3)	0.9691 (1)	0.34 (7)
52.18% Ta + 47.82% Nb	0.1445 (4)	0.3139 (1)	0.46 (9)
50.98% Ta + 49.02% Nb	0.2537 (3)	0.5123 (1)	0.29 (9)
42.12% Ta + 57.88% Nb	0.2176 (4)	0.4102 (1)	0.6 (1)
41.02% Ta + 58.98% Nb	0.2686 (4)	0.7505 (1)	0.5 (1)
37.08% Ta + 62.92% Nb	0.3327 (4)	0.6090 (1)	0.5 (1)
32.72% Ta + 67.28% Nb	0.1388 (4)	0.8426 (1)	0.3 (1)
20.60% Ta + 79.40% Nb	0.0281 (5)	0.0391 (1)	0.4 (1)
18.54% Ta + 81.46% Nb	0.3106 (5)	0.1772 (2)	0.5 (1)
17.94% Ta + 82.06% Nb	0.4691 (5)	0.2708 (1)	0.6 (1)
	0.028 (2)	0.7125 (4)	0.4 (2)
	0.469 (2)	0.3885 (4)	0.1 (2)
	0.168 (2)	0.9601 (5)	0.5 (2)
	0.394 (2)	0.6826 (5)	0.7 (3)
	Occupancy 72.64% Ta + 27.36% Nb 72.54% Ta + 27.46% Nb 67.82% Ta + 32.18% Nb 52.18% Ta + 47.82% Nb 50.98% Ta + 49.02% Nb 42.12% Ta + 57.88% Nb 41.02% Ta + 58.98% Nb 37.08% Ta + 62.92% Nb 32.72% Ta + 67.28% Nb 20.60% Ta + 79.40% Nb 18.54% Ta + 81.46% Nb 17.94% Ta + 82.06% Nb	Occupancyx72.64% Ta + 27.36% Nb 0.3715 (3)72.54% Ta + 27.46% Nb 0.4914 (3)67.82% Ta + 32.18% Nb 0.4383 (3)52.18% Ta + 47.82% Nb 0.1445 (4)50.98% Ta + 49.02% Nb 0.2537 (3)42.12% Ta + 57.88% Nb 0.2176 (4)41.02% Ta + 58.98% Nb 0.2686 (4)37.08% Ta + 62.92% Nb 0.3327 (4)32.72% Ta + 67.28% Nb 0.1388 (4)20.60% Ta + 79.40% Nb 0.0281 (5)18.54% Ta + 81.46% Nb 0.3106 (5)17.94% Ta + 82.06% Nb 0.4691 (5) 0.028 (2) 0.469 (2) 0.168 (2) 0.394 (2)	Occupancyxz72.64% Ta + 27.36% Nb 0.3715 (3) 0.0726 (1)72.54% Ta + 27.46% Nb 0.4914 (3) 0.8706 (1)67.82% Ta + 32.18% Nb 0.4383 (3) 0.9691 (1)52.18% Ta + 47.82% Nb 0.1445 (4) 0.3139 (1)50.98% Ta + 49.02% Nb 0.2537 (3) 0.5123 (1)42.12% Ta + 57.88% Nb 0.2176 (4) 0.4102 (1)41.02% Ta + 58.98% Nb 0.2686 (4) 0.7505 (1)37.08% Ta + 62.92% Nb 0.3327 (4) 0.6090 (1)32.72% Ta + 67.28% Nb 0.1388 (4) 0.8426 (1)20.60% Ta + 79.40% Nb 0.0281 (5) 0.1772 (2)17.94% Ta + 81.46% Nb 0.3106 (5) 0.1772 (2)17.94% Ta + 82.06% Nb 0.4691 (5) 0.2708 (1) 0.168 (2) 0.3885 (4) 0.168 (2) 0.6826 (5)

Table 8 Positional, thermal parameters and occupancies for $Nb_{12-x}Ta_xS_4$ (x ~ 5.26)

y = 0.25.

	330	pm, M	-S < 300 pm)				
M1	M2	2 ^a	283.1 (3)	M5	M1	2	286.2 (3)
	МЗ	2	283.3 (3)		M3	2	286.8 (3)
	м5	2	286.2 (4)		M3	1	308.6 (3)
	M8	2	284.5 (4)		M8	1	326.3 (6)
					M10	2	282.5 (5)
M2	M1	2	283.1 (3)		M10	1	312.6 (6)
	МЗ	1	326.8 (4)		S 3	2	252 (1)
	М4	2	283.1 (4)			•	·
	М6	2	292.0 (4)	М6	M2	2	292.0 (4)
	M11	2	298.6 (5)		МЗ	2 .	296.6 (4)
	S 1	1	276 (1)		M4	1	324.1 (6)
					М9	2	310.8 (5)
М3	M1	2	283.3 (3)		s2	1	252 (2)
	M2	1	326.8 (4)		S 3	2	259 (1)
	МЗ	2	289.0 (5)				
	м5	2	286.8 (4)	M7	M4	2	280.2 (5)
	м5	1	308.6 (4)		M9	1	327.0 (6)
	М6	2	296.6 (4)		M11	2	303.1 (6)
	S 3	1	261 (2)		M12	2	291.1 (5)
					M12	2	310.6 (5)
M4	M2	2	283.1 (4)		S 1	1	262 (2)
	м6	1	324.1 (6)		S1	1	277 (1)
	м7	2	280.2 (5)		S4	1	253 (2)
	м9	2	283.5 (4)				
	M11	1	321.6 (6)	M8	Ml	2	284.5 (3)
	M12	1	324.9 (6)		M5	1	326.3 (4)
	S1	2	251 (1)		M10	2	314.3 (5)
					M11	2	312.0 (6)
					S2	2	254 (1)
					S 4	1	249 (2)

Table 9 Interatomic distances (pm) for $Nb_{12-x}Ta_xS_4$ (x \approx 5.26) (M-M <

^a number of neighbors.

MQ	MA	2	283 5 (3)	S 1	M2	1	276 (1)
115	MG	2	310 8 (3)	51	MZ MA	- 2	251 (1)
	M7	1	327 0 (4)		M7	1	251 (1)
	M1 2	1 2	327.0 (4)		M7	1	202(2)
	M12	2	307.3 (5)		M /	1	277 (1)
	S2	2	248 (1)		MII	2	256 (1)
	S4	1	249 (2)		M12	. 2	255 (1)
м10	M5	2	282.5 (4)	S2	мб	1	252 (1)
	M5	1	312.6 (5)		M8	2	254 (1)
	M8	2	314.3 (4)		M9	2	248 (1)
	M10	2	311.4 (7)		M10	1	245 (1)
	S2	1	245 (1)				
	S3	2	252 (1)	S3	МЗ	1	261 (1)
	S3	1	292 (2)		M5	2	252 (1)
					мб	2	259 (1)
M11	M2	2	298.6 (4)		M10	1 ·	292 (2)
	M4	1	321.6 (5)		M10	2	252 (1)
	M7	2	303.1 (5)				
	M8	2	312.0 (4)	S 4	M7	1	253 (2)
	S1	2	256 (1)		M8	1	249 (2)
	S4	2	259 (1)		M9	1	249 (2)
					M11	2 [.]	259 (1)
м12	M4	1	324.9 (5)		M12	2	262 (1)
	M7	2	291.1 (4)				
	M7	2	310.6 (4)				
·	M9	2	307.3 (4)				
	S1	2	255 (1)				
	S4	2	262 (1)				

Table 9 (continued)

•

Observed and calculated structure factors of $Nb_{6.74}Ta_{5.26}S_4$ are listed in Appendix B.

C. Results and Disscussions

In the structure of $Nb_{12-x}Ta_xS_4$ (x \approx 5.26) each metal position is fractionally occupied by niobium and tantalum and the metal positions have been labeled so that as the metal indicator increases, the n_{Nb}/n_{Ta} ratio on that position also increases, i.e., from M1 to M12 the $n_{\rm Nb}/n_{\rm Ta}$ ratio on the metal position increases. Figures 4 and 5 show the structure of $Nb_{12-x}Ta_xS_4$. The structure can be thought of as a strongly modified bcc metal structure. The fragments of modified bcc metal networks can be easily recognized from Figure 5. All of the atoms lie on layers at y = 1/4 and y = 3/4. The coordinations of the sulfur and metal atoms in this compound are similar to those of $Nb_{21}S_8$ and Nb14S5; i.e., the coordinations of sulfur are capped trigonal prismatic, and the coordinations of metals are distorted capped cubic prismatic and capped pentagonal prismatic. The coordinations of S1 and S3 can be easily recognized as a tricapped trigonal prism and a bicapped trigonal prism, respectively. The coordination of S2 is a trigonal prism and that for S4 a monocapped trigonal prism, in both cases the trigonal prism axis lies in the mirror plane. The coordinations of M1 to M10 are distorted capped cubic prismatic, while the

Figure 4 The crystal structure of $Nb_{12-x}Ta_xS_4$ viewed along the b-axis. Unit cell is marked by solid lines

Figure 5 The projection of $Nb_{12-x}Ta_xS_4$ on the xz-plane. Unit cell is marked by solid lines

coordinations of M11 and M12 are capped pentagonal prismatic; e.g., for M1 the coordinating atoms are two M2, two M3, two M5 and two M8 while the capping ones are M3, M6, M10 and M11. The distorted capped cubes of M1, M2 and M3 consist only of metal atoms; while the distorted cubic coordinations and the pentagonal coordinations of other metal atoms consist of both metal atoms and sulfur atoms, i.e., sulfur atoms substitute for metal atoms at the corners of cubic and pentagonal prisms leading to increased distortion of the prisms. From Figure 4 it can be seen that the higher the metal indicator, the more sulfur is bound to the metal. The same result was also found in the compound $Nb_{4.92}Ta_{6.08}S_4$. Thus, it appears that in the metal-rich sulfides Nb-S binding is favored over that of Ta-S.

The shortest distance between the metal atoms is 2.80Å, compared with 2.82Å in $Nb_{4.92}Ta_{6.08}S_4$. There is no doubt that there are numerous strong metal-metal interactions in this solid. If only $d_{M-M} < 3.30Å$ and $d_{M-S} < 3.00Å$ are considered, the metallic and sulfur coordination numbers range from 8-11 and 6-9, respectively.

The characteristic features common for a broad class of transition metal-rich compounds are triangular prismatic metal atom coordinations about the nonmetal atoms, the dense packing of the metal atoms and the atoms located in mirror planes

perpendicular to short axis (about 3.5 Å). This new compound, $Nb_{6.74}Ta_{5.26}S_4$ is also included in this class.

The ratio of metal and nonmetal for this new compound is 12:4; compared with 11:4 of Nb_{4.92}Ta_{6.08}S₄. Although the space group (Pnma) is the same and the cell parameters are similar for Nb_{12-x}Ta_xS₄ and Nb_xTa_{11-x}S₄ there are substantial differences between these two compounds, e.g., the longest axis is the c-axis in Nb_{12-x}Ta_xS₄ while the longest one in Nb_xTa_{11-x}S₄ is the aaxis. The coordinations of metals and nonmetals in Nb_{12-x}Ta_xS₄ and Nb_xTa_{11-x}S₄ are very similar except that there are pentagonal prisms for metals in the former compound and there is evidence for a volume effect resulting from nonbonding orbitals on sulfur in the latter compound. Thus, Nb_{12-x}Ta_xS₄ is more similar to the Nb-rich sulfides, Nb₂₁S₈¹⁰ and Nb₁₄S₅;¹¹ than Nb_xTa_{11-x}S₄, i.e., there is capped pentagonal prismatic coordination around some metals in Nb_{12-x}Ta_xS₄. CRYSTAL STRUCTURE OF $Nb_x Ta_{5-x}S_2$ (x \approx 1.72)

A. Preparation and Characterization

The initial reactant, Ta_2S ,¹⁹ was synthesized by heating a mixture of tantalum (Alpha Products, M3N8) and sulfur (Fisher Scientific, lab grade) with the n_{Ta}/n_S ratio of 2 at 440°C, first in a previously out-gassed quartz tube to consume all of free sulfur, and then at 800° C for three days. "Nb₂S" (there is no known compound with the formula Nb_2S) was synthesized using a similiar method. The cold pressed mixtures of Ta_2S and "Nb₂S" were arc-melted in an argon atmosphere, then annealed in an induction furnace. When $n_{Nb}:n_{Ta} = 1:4$, there were several unexplained reflections in the powder pattern of the arc-melted sample, one of them at very low diffraction angle. After annealing at 1350°C in an induction furnace, the unexplained reflections disappeared, and $Nb_xTa_{11-x}S_4$ appeared and was the major phase in the sample. When several mixtures of Ta_2S and "Nb₂S" ($n_{Ta2S}:n_{Nb2S} = 2$, 3 and 4, respectively) were arc-melted, these new reflections from the new phase also appeared in the powder pattern and it seemed the new phase was the major phase in the sample for n_{Ta2S}/n_{Nb2S} equal to 2 or 3.

The products in which the new phase was the major phase exhibited metallic luster and the facile shearing characteristic of layered compounds. It could be seen by the diffuse
reflections in the powder pattern that the sample was not well crystallized.

The cell parameters of the new phase, $Nb_xTa_{5-x}S_2$ (x ≈ 1.72), were determined to be a = 3.3203, c = 21.619(12)Å in space group I4/mmm from the powder pattern of the arc-melted sample in the molar ratio: $n_{Ta2S}:n_{Nb2S} = 3:1$, according to the two-theta angles calculated with program PWDR⁵¹ (using data from the structure solution for $Nb_{1.72}Ta_{3.28}S_2$). Powder diffraction data for this new compound are presented in Table 10. Intensities were calculated using the computer program PWDR. Positional parameters were used from the refined structure.

The arc-melted sample was examined by the EDAX method in a scanning electron microscope, and the major phase was found to consist of tantalum, niobium and sulfur elements with minor amounts of tungsten and copper originating from the arc-melting process and probably on the sample surface.

After the structure and composition of $Nb_{1.72}Ta_{3.28}S_2$ were determined, an attempt was made to synthesize the title compound starting with the elements. A mixture of Ta, Nb and S $(n_{Ta}:n_{Nb}:n_{S} \approx 3.28:1.72:2)$ was heated at 440°C in a previously out-gassed quartz tube until the yellow color of free sulfur disappeared. The temperature was increased to 800°C and the sample was held at this temperature for 3 days. The mixture was then arc-melted three times and the mass loss was about 0.4% after the arc-melting. The powder pattern of this sample

h	k	1	20 _{obs}	20 _{calc}	I _{obs} b	Icalc
0	0	2	8.17	8.17	S	78.0
1	0	5	34.05	34.02	м	39.2
1	1	0	38.28	38.31	S	65.0
1	1	2	39.18	39.24	W	8.6
1	0	7	39.93	39.83	S	100.0
0	0	12	50.61	50.62	W	7.6
2	0	0	55.28	55.29	м	24.7
0	0	14		59.84		5.4
1	1	12		65.22		16.6
2	1	5		66.53		15.0
2	1	7	70.31	70.28	М	49.2
1	1	14		73.32		14.1

Table 10 X-ray powder diffraction of $Nb_xTa_{5-x}S_2$ (x ~ 1.72) (Cu K α_1 radiation)^a (20 < 75°)

 $^{\rm a}$ 20 values of reflections with relative intensities $\rm I_{calc}$ > 5 are listed.

^b W, weak; M, medium; S, strong.

indicated that the title compound was the main phase with less than 10% $\rm Nb_xTa_{2-x}S$ (Ta_2Se^{31}-type).

The same result was also obtained from arc-melting the mixture of Ta, TaS and "Nb₂S" with $n_{Ta}:n_{Nb}:n_{S} = 3.28:1.72:2$ overall. The quantitive analysis of the arc-melted sample using the EDAX method only found one phase for which the molar ratio of n_{Ta}/n_{Nb} was 1.87 cooresponding to Nb_{1.74}Ta_{3.26}S₂, although the Guinier x-ray powder pattern indicated that minor Nb_xTa_{2-x}S (Ta₂Se³¹-type) coexisted with the title compound.

B. Single Crystal X-Ray Investigation

One gray-colored needle-shaped crystal $(0.02 \times 0.02 \times 0.25 \text{ mm}^3)$ was picked from the arc-melted mixture of Ta₂S and "Nb₂S" in which the molar ratio was 3:1; and placed on a Rigaku AFC6 single-crystal x-ray diffractometer for data collection. During the SEARCH only twelve peaks were found in the range of 14°-45°(20). Seven peaks were indexed in the INDEX TWIN process as a body-centered cell with a = 3.3129(30), b = 3.3202(41), c = 21.4348(214)Å, α = 89.904(91)°, β = 89.992(93)° and γ = 90.223(96)°. Intensity data were collected using monochromatic MoK α radiation, employing the 20- ω scan technique up to 60°(20). 955 reflections (hkl, -hkl, hk-1, -hk-1) were collected, and 124 unique reflections with F² > 3 σ (F²₀) were obtained and used for structure determination. The observed intensities were corrected

for Lorentz-polarization and absorption effects with an absorption coefficient of 795.13cm⁻¹. There was no significant fluctuation or decay of the crystal as determined by checking three standard reflections measured every 150 reflections. Subsequent data processing and structure calculations were performed with the program package TEXSAN.

First, the structure was solved using the direct method in the orthorombic centrosymmetric space group Immm obtained from automatic check in PROCESS. The empirical absorption correction was applied with the max. and min. transmission factor of 1.000 and 0.526, respectively. Application of the direct method resulted in finding three metal atoms and one sulfur atom in an asymmetric unit. The multiplicities for three metal positions were refined after each of them was assigned as 50%Nb and 50%Ta. Isotropic refinement was then done while the multiplicities were held fixed. Finally, the isotropic refinement was done with multiplicities for the metals also refined. The secondary extinction coefficient was also refined; but it was negative, i.e., there is no secondary extinction. Subsequently, the anisotropic refinement was done, first with the multiplicities for the metal positions were held fixed, and finally $U_{i\,i}$ for all atoms and multiplicities for metals were refined altogether. R, $\rm R_w$ and GOF were obtained as 0.053, 0.054 and 1.36; respectively. The composition was determined to be Nb2.17Ta2.83S2 from the refinement.

Since the a-axis and the b-axis are very nearly equal in length, the tetragonal space group I4/mmm was used to refine the structure. The final result of Immm was used as a basis for refinement in the space group of I4/mmm; after the space group and Laue group had been changed accordingly and the original data were averaged in the new Laue group 4/mmm with $R_{ave} = 0.165$ compared to 0.155 for Laue group mmm. R, R_w and GOF were finally obtained as 0.049, 0.058 and 1.52; respectively. The composition was determined to be Nb_{1.97}Ta_{3.03}S₂ from the refinement.

The DIFABS⁵⁹ correction was applied to the data, to which the empirical correction had been applied, but which had not been averaged. The max. and min. transmission factors were 1.272 and 0.731, respectively after the isotropic refinement in the space group I4/mmm had completed. For the above process (DIFABS) the original cell constants and orientation matrix were used. After the data were averaged ($R_{ave} = 0.09$), the same procedure as before was applied. Final R, R_w and GOF were obtained as 0.034, 0.038 and 1.43; respectively. The composition was determined to be Nb_{1.72}Ta_{3.28}S₂ by this approach. The refinement result of the last approach was adopted because of the lower R-factors.

The crystal was also examined by the Weissenberg technique and some streaking was observed. Thus, the crystal was not of optimum quality for refininement and the precision of the results

could be adversely effected. However, the R factor was indicative of satisfactory refinement.

The refinement result, crystal data, and bond distances are given in Tables 11, 12, and 13; respectively. Figures 6 and 7 show representations of this compound.

Observed and calculated structure factors are listed in Appendix C.

C. Results and Discussions

In the structure of $Nb_xTa_{5-x}S_2$ (x ≈ 1.72) each metal position is fractionally occupied by niobium and tantalum and the metal positions have been labeled so that as the metal indicator increases, the n_{Nb}/n_{Ta} ratio on that position also increases, i.e., from M1 to M3 the n_{Nb}/n_{Ta} ratio on the metal position increases. The structure can be viewed as a bcc-type Nb-Ta solid solution in which two neighboring layers in every seven are replaced by sulfur. Some distortions relative to bcc are observed; e.g., the cube consisting of eight M2 contracts along the c-axis while the cube of four M1 and four M3 expands along the c-axis, with M2 deviating slightly from the center of the cube. This novel layered structure is reminisent of Ta_2Se^{31} which is composed of six layers in the sequence Se-Ta-Ta-Ta-Ta-

		occupancy	σ ₁₁	σ ₃₃		
Ml	2a	88.3% Ta + 11.7% Nb	0	0.98 (9)	0.011 (1)	0.015 (2)
м2	4e ·	82.6% Ta + 17.4% Nb	0.4248(1)	0.68 (5)	0.0098 (7)	0.006 (1)
мЗ	4e	37.3% Ta + 62.7% Nb	0.1560 (1)	0.74 (8)	0.009 (1)	0.010 (2)
S	4e		0.3024 (4)	0.7 (2)	0.011 (4)	0.005 (6)

Table 11 Positional, thermal parameters and occupancies for $Nb_xTa_{5-x}S_2$ (x \approx 1.72)

x, y = 0 for all atoms; $U_{22} = U_{11}$, $U_{1j} = 0$. $B_{eq} = 8\pi^2/3 (U_{11} + U_{22} + U_{33})$.

	Table	12	Crystal	data	for	Nb_Ta5-x	S2	(x ≈	1.72)
--	-------	----	---------	------	-----	----------	----	------	-------

Formula	^{Nb} 1.72 ^{Ta} 3.28 ^S 2
Space group	I4/mmm
a, Å	3.3203(9) ^a
c, Å	21.6190(116) ^a
v, Å ³	238.34(16) ^a
z	2
d _{calc} , g/cm ³	11.513
Crystal size, mm ³	0.02x0.02x0.25
μ (MoK $_{\alpha}$), cm ⁻¹	795.13
Data collection instrument	RIGAKU AFC6
Radiation (monochromated in	
incident beam)	Mo K_{α} ($\lambda = 0.71069$ Å)
Orientation reflections,	
number, range (20)	12,14-45
Temperature, [°] C	22
Scan method	2θ-ω
Octants measured	hkl,-hkl,hk-l,-hk-l
Data collection range, 20, deg	0-60
No. refl. measured	955
No. unique data, total	
with $F_o^2 > 3\sigma(F_o^2)$	124
No. parameters refined	15
Trans. factors, max., min.	1.000,0.526
R ^b , R _w ^c , GOF ^d	0.035, 0.038, 1.43
Largest shift/esd, final cycle	0.00
Largest peak, e/Å ³	4.99 (1.06Å, M2)

a obtained from indexing of the powder pattern. b $R = \Sigma \begin{vmatrix} F_0 \end{vmatrix} - \begin{vmatrix} F_c \end{vmatrix} / \Sigma \begin{vmatrix} F_0 \end{vmatrix}$. c $R_w = [\Sigma_w(|F_0| - |F_c|)^2 / \Sigma_w|F_0|^2]^{1/2}; w = 1/\sigma^2(|F_0|)$. d $GOF = \Sigma((|F_0| - |F_c|) / \sigma_i) / (N_{obs} - N_{parameters})$.

Table 13	Interatomic	distances	(pm) for Nb _x Ta _{5-x} S ₂	$(x \approx 1.72)$ (< 340pm)
	м1	Ml	4ª	332.03 (9)
		M2	8	285.6 (2)
		МЗ	2	337.4 (3)
	M2	M1	4	285.6 (2)
		M2	1	325.1 (6)
		M2	4	332.03 (9)
		MЗ	4	292.7 (3)
		S	1	264.6(9)
	мз	Ml	1	337.4 (3)
		M2	4	292.7 (3)
		мз	4	332.03 (9)
		S	4	251.4 (3)
		S	· 1	316.4 (9)
	S	M2	1	264.6 (9)
		мз	4	251.4 (3)
		мз	1	316.4 (9)
		S	4	326 (1)
		S	4	332.03 (9)

....

-- --

^a number of neighbors.

.

.

.

Figure 7 The projection of $Nb_xTa_{5-x}S_2$ on the xz-plane. Larger circle represents S. Vertical is z-direction

Se, also in bcc-type packing. In $ZrCl-type^{62}$ and $ZrBr-type^{63}$ compounds the sequence of the layers is X-Zr-Zr-X (X = Cl, Br) and the homoatomic analogue structure is ccp-type. The structure can also be thought of as a modified bcc metal structure. The fragments of modified bcc metal networks can be easily recognized from Figure 7.

The shortest distance between metal and metal is 2.856Å compared with 2.86Å in elemental niobium or tantalum, and thus it is clear that there is robust metal-metal bonding in this compound.

The coordination of M1 is as follows: eight M2 (2.856Å) at the corners of a distorted capped cube with four M1 (3.320Å) and two M3 (3.373Å) as capping atoms. Around M2 there are four M1 (2.856Å) and four M3 (2.926Å) at the corners of a distorted capped cube with five M2 (four at 3.320Å and one at 3.251Å), and one S (2.646Å) as capping atoms. The corners of the distorted capped cube around M3 are four M2 (2.926Å) and four sulfur (2.514Å) while the capping atoms are one M1 (3.373Å) and four M3 (3.320Å), respectively.

As the identifying number of the metal increases, the Nb/Ta ratio on that position also increases. The number of coordinating sulfurs for M1, M2 and M3 are 0, 1 and 4, respectively; i.e., the more Nb in the position, the more sulfur bound to this position. The shortest distance between sulfur atoms (3.26Å) in neighboring layers indicates interlayer van der Waals interactions, consistant with the graphitic character and the tendency of the compound to disorder. This is the first van der Walls layered compound with such high ratio of $n_{metal}/n_{nonmetal}$, 2.50.

The layered disulfides (TiS₂, MoS₂, NbS₂, etc.) have been studied extensively⁶⁴ because they intercalate both organic and inorganic substances into the interlayer van der Waals gaps between adjacent sulfur layers. The compound reported here introduces the possibility of studying intercalates in a new setting, namely, in a compound with a robustly metallic region separating van der Waals layers. This compound also raises again the intriguing chemical question posed previously by $Nb_xTa_{11-x}S_4$ (x ≈ 4.92) and $Nb_{12-x}Ta_xS_4$ (x ≈ 5.26), namely: what are the properties of mixed Nb-Ta that cause compounds of the mixed metals to differ substantially in M/S ratio and structure from the binary sulfides of niobium and tantalum?

CRYSTAL STRUCTURE OF Nb_xTa_{2-x}S ($x \approx 0.95$)

A. Preparation and Characterization

High purity Nb (Alpha Products) and S (Fisher Scientific Co.) were put into a previously out-gassed silica tube in the molar ratio: $n_{Nb}:n_S = 2:1$ and were heated at 440°C first and then held at 800°C for 5 days in a tube furnace. TaS was synthesized using a similiar method. The mixture of "Nb₂S" (there is no known compound with the formula Nb₂S), TaS and Ta with $n_{Ta}:n_{Nb}:n_{S} =$ 3:2:2.17 was pressed into a pellet and arc-melted three times in an argon atmosphere. The Guinier x-ray powder pattern indicated that a new phase existed together with less than 2% NbS-type⁶⁵ compound in the sample; but the powder pattern of the arc-melted sample was diffuse, which indicated that the sample was not well crystallized (if the sample was arc-melted longer, $Mb_xTa_{5-x}S_2$ was also found in the sample). An attempt was made to anneal the arc-melted sample to improve the crystallinity of the sample. First the sample was annealed for 10 hours in an induction furnace at 1350°C, but the new phase disappeared to yield $Nb_xTa_{11-x}S_4$ and unknown phases. The arc-melted sample was put in a previously out-gassed silica tube and annealed for 5 weeks at a lower temperature (850°C) in a tube furnace. Many needle-like crystals were found in the annealed sample. The x-ray powder pattern of the annealed (850°C) sample was the same as that of

the nonannealed sample. The cell parameters of the new phase, $Nb_xTa_{2-x}S$ (x = 0.95), were determined to be a = 3.3304(7), c = 9.0928(94)Å in tetragonal space group P4/nmm according to the two-theta angles calculated with program PWDR⁵¹ (using data from the structure solution for $Nb_{0.95}Ta_{1.05}S$). Powder diffraction data for this new compound are presented in Table 14. Intensities were calculated using the computer program PWDR. Positional parameters were used from the refined structure.

After the structure and composition of Nb_{0.95}Ta_{1.05}S were determined, an attempt was made to synthesize the title compound from a stoichiometrically appropriate mixture of Ta, TaS and "Nb₂S" by means of the arc-melting method. The total mass loss after the arc-melting process was less than 1%. Two phases, Nb_xTa_{2-x}S and about 50% Nb_{1-x}Ta_xS (NbS-type⁶⁵), were found to coexist in the product from the x-ray powder diffraction. The ratios of n_{Ta}/n_{Nb} were determined to be 1.29 and 0.81 for Nb_xTa_{2-x}S and Nb_{1-x}Ta_xS, respectively, by the EDAX method in a scanning electron microscope. These values correspond to Nb_{0.87}Ta_{1.13}S (Nb_xTa_{2-x}S) and Nb_{0.55}Ta_{0.45}S (Nb_{1-x}Ta_xS).

A mixture of the elements tantalum, niobium and sulfur with $n_{Ta}:n_{Nb}:n_{S} \approx 1.15:0.85:1$ were heated at 440°C, first in a previously evacuated silica tube to consume all of the free sulfur and then were held at 800°C for three days. Finally the pressed sample was arc-melted three times in an argon atmosphere. The total mass loss after the arc-melting process was less than

h	k	1	20 _{obs}	$2\theta_{calc}$	I _{obs} b)	Icalc
0	0	1	9.63	9.72	S	71.9
1	0	2	33.35	33.32	S	40.8
1	1	0	38.21	38.18	S	66.1
1	1	1	39.46	39.49	W	11.1
1	0	З	40.19	40.19	S	100.0
0	0	5		50.12		6.9
2	0	0	55.10	55.10	м	24.9
0	0	6		61.10		5.5
1	1	5	64.48	64.71	Ψ.	14.9
2	1	2	65.95	65.94	W	15.1
2	1	3	70.34	70.37	м	49.7
1	1	6	74.32	74.37	W	14.7

Table 14 X-ray powder diffraction of $Nb_xTa_{2-x}S$ (x ≈ 0.95) (Cu K α_1 radiation)^a (2 θ < 75°)

 $^{\rm a}$ 20 values of reflections with relative intensities $\rm I_{calc}$ > 5 are listed.

^b W, weak; M, medium; S, strong.

0.8%. The Guinier powder pattern of the sample indicated that about 5% NbS-type compound coexisted with the major product, $Nb_xTa_{2-x}S$. When the initial amounts of sulfur were decreased to $n_{Ta}:n_{Nb}:n_S = 1.15:0.85:0.9$ and the same procedure of synthesis was used, the amount of NbS-type compound decreased to less than 5%. The products of a stoichiometrically appropriate mixture with $n_{Ta}:n_{Nb}:n_S \approx 1.10:0.90:0.85$ were $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$ when the same synthesis produre was used.

This means that samples in this range of n_{Ta}/n_{Nb} favor the formation of solid solutions of $Nb_{1-x}Ta_xS$ (NbS-type) and $Nb_xTa_{2-x}S$ and with increasing ratio of quantity of metals to sulfur the amounts of NbS-type solid solution decreased.

B. Single Crystal X-Ray Investigation

Many crystals were found in the annealed (850°C) sample. A gray-colored crystal (0.03x0.04x0.15mm³) was picked from the annealed sample and attached to a glass fiber using APIEZON grease (the crystal was deformed when EPOXY glue was used). First the quality of the crystal were checked using a Weissenberg camera. Then intensity data were collected using monochromatic Mo K α radiation, employing the 20- ω scan technique up to 65°(20) on a RIGAKU AFC6 single-crystal diffractometer. A total of 763 reflections (hkl, -hkl, hk-1, -hk-1) were monitored, and 104 unique reflections with F² > 3 σ (F²₀) were obtained and used for

the structure determination. The observed intensities were corrected for Lorentz-polarization and absorption effects with an empirical absorption coefficient of 622.93cm⁻¹. Based on three standard reflections measured every 150 reflections, there was no significant fluctuation or decay of the crystal. Subsequent data processing and structure calculations were performed with the program package TEXSAN.

The space group was determined to be P4/nmm using the program PROCESS. First an empirical absorption correction was applied with the max. and min. transmission factors of 1.000 and 0.301, respectively. Application of direct methods resulted in an electron map containing three strong peaks per asymmetric unit on the x, y = 1/4 sections. Two of these peaks were much higher than the 3rd one. The two stronger peaks were taken to be at Ta positions, and the 3rd peak to be at a S position; and the refinement was initiated. The multiplicities for the metal positions were refined after 50%Ta and 50%Nb was assigned to each metal position. Finally the isotropic thermal parameters were refined with the concomitant refinement of the multiplicities for the metal positions, and the final R, $R_{\rm w}$ and GOF were 0.048, 0.046 and 1.647, respectively. The composition was determined to be $Nb_{0.59}Ta_{1.41}S$ from the isotropic refinement (because the secondary extinction coefficient became negative when refined, it is concluded that there is no significant secondary extinction in the compound).

After isotropic refinement, F_c values for $Nb_{0.59}Ta_{1.41}S$ were calculated and used for a DIFABS⁵⁹ absorption correction for the \textbf{F}_{o} values in the mode that utilizes $\theta\text{-dependent}$ systematic deviations $|F_{\alpha}| - |F_{\alpha}|$. The ratio of the highest to the lowest transmission was 1.385. An anisotropic refinement was then carried out, and the final R, R_w and GOF were 0.048, 0.048 and 1.054, respectively. The composition was determined to be $Nb_{0.95}Ta_{1.05}S$ from the anisotropic refinement. (The R, R_w and GOF were obtained as 0.048, 0.049 and 1.069, respectively, if the multiplicities for the metal positions were fixed (i.e., the composition was $Nb_{0.59}Ta_{1.41}S$ during the anisotropic refinement). However, the first approach appears to be more reasonable. There are two impurity peaks higher than $5e^{-}/Å^{3}$ (5.695 and 5.267 $e^{-}/Å^{3}$) in the result of the second approach, compared to only one impurity peak higher than $5e^{-1/3}$ (5.291e^{-1/3} in the result of the first approach). In addition the ratio of U_{33}/U_{11} for the sulfur atom was about 10 in the second case, compared to about 3 in the first case. The trend that niobium preferentially occupies the metal positions bound to more sulfur is true for the results of both approaches. Based on the above arguments the result of the first approach is preferred.

The crystal data, atom parameters and bond distances are given in Tables 15, 16 and 17, respectively.

Figures 8 and 9 show representations of $Nb_xTa_{2-x}S$ (x = 0.95).

```
Nb0.95<sup>Ta</sup>1.05<sup>S</sup>
Formula
                                                     P4/nmm(#129)
Space group
                                                     3.3304(7)<sup>a</sup>
a, Å
c. Å
                                                     9.0928(94)<sup>a</sup>
v. Å<sup>3</sup>
                                                     100.85(11)^{a}
z
                                                     2
d<sub>calc</sub>, g/cm<sup>3</sup>
                                                     10.275
Crystal size, mm<sup>3</sup>
                                                     0.03x0.04x0.15
\mu (MOK<sub>\alpha</sub>), cm<sup>-1</sup>
                                                     622.93
                                                     RIGAKU AFC6
Data collection instrument
Radiation (monochromated in
                                                     Mo K_{\alpha} (\lambda = 0.71069 Å)
  incident beam)
Orientation reflections,
  number, range (2\theta)
                                                     23,14-40
Temperature, °C
                                                     22
                                                     2θ-ω
Scan method
                                                     hkl,-hkl,hk-l,-hk-l
Octants measured
Data collection range, 2\theta, deg
                                                     0-65
No. refl. measured
                                                     763
No. unique data, total
  with F_o^2 > 3\sigma (F_o^2)
                                                     104
No. parameters refined
                                                     12
Trans. factors, max., min.
                                                     1.000,0.301
R<sup>b</sup>, R<sub>w</sub><sup>c</sup>, GOF<sup>d</sup>
                                                     0.048, 0.048, 1.069
Largest shift/esd, final cycle
                                                     0.00
Largest peak, e/Å<sup>3</sup>
                                                     5.29 (0.74Å, S)
```

a obtained from indexing of the powder pattern. $\begin{array}{c|c} R &= & \Sigma & | & F_{o} \\ \hline & R &= & \Sigma & | & F_{o} \\ \hline & R_{w} &= & [\Sigmaw(\mid F_{o} \mid - \mid F_{c} \mid)^{2} / \Sigmaw \mid F_{o} \mid^{2}]^{1/2}; w = 1/\sigma^{2}(\mid F_{o} \mid). \\ \hline & d & GOF = & \Sigma((\mid F_{o} \mid - \mid F_{c} \mid) / \sigma_{i}) / (N_{obs} - N_{parameters}). \end{array}$

Table 16 Positional, thermal parameters end occupancies for $Nb_xTa_{2-x}S$ (x = 0.95)

Atom	site	occupancy, %	z	Beq	U ₁₁	U33
M1	2c	76.6Ta + 23.4Nb	0.4146(1)	0.22(3)	0.0031(6)	0.0020(6)
м2	2c	28.2Ta + 71.8Nb	0.7761(2)	0.37(5)	0.0041(7)	0.006(1)
S	2c		0.119(1)	0.6(2)	0.005(2)	0.014(4)

x,y = 1/4 for all atoms; $U_{22} = U_{11}$, $U_{ij} = 0$. $B_{eq} = 8\pi^2/3(U_{11} + U_{22} + U_{33})$.

.

	pm)	distances	(pm) 101 Mbx1=2-x5	(x ~ 0.95) (< 340
4	41	M1	4 ^a	333.04 (7)
		м1	4	282.1 (2)
		M2	4	292.5 (2)
		M2	1	328.7 (4)
		S	1	269 (1)
1	12	M1	4	292.5 (2)
		M1	1	328.7 (4)
		M2	4	333.04 (7)
		S	4	254.1 (4)
		S	1	312 (1)
S	5	Ml	1	269 (1)
		M2	4	254.1 (4)
		M2	1	312 (1)
		S	4	320 (1)
		S	4	333.04 (7)

Table 17 Interatomic distances (pm) for $Nb_xTa_{2-x}S$ (x ≈ 0.95) (< 340

^a number of neighbors.

Figure 8 The projection of $Nb_xTa_{2-x}S$ (Ta₂Se-type³¹) on the xz-plane. Vertical is z-direction. Unit cell is marked by solid lines

Figure 9 The projection of $Nb_xTa_{2-x}S$ (Ta₂Se-type³¹) on the xzplane. Larger circle represents S. Vertical is zdirection

Observed and calculated structure factors are listed in Appendix D.

C. Results and Discussions

 $Nb_xTa_{2-x}S$ is isostructural with Ta_2Se .³¹ In the structure of $Nb_xTa_{2-x}S$ each metal position is fractionally occupied by niobium and tantalum and the metal positions have been labeled so that as the metal indicator increases, the $n_{\rm Nb}/n_{\rm Ta}$ ratio on that position also increases, i.e., from M1 to M2 the $n_{
m Nb}/n_{
m Ta}$ on the metal position increases. Figure 8 is a projection of the structure onto the xz-plane. The unit cell is marked using solid lines. The structure of $Nb_xTa_{2-x}S$ is similiar to that of $Nb_xTa_{5-x}S_2$ in that the structure can be viewed as a bcc-type Nb-Ta solid solution in which two neighboring layers in every six (compared to every seven in $Nb_xTa_{5-x}S_2$) are replaced by S. Some distortions relative to bcc-type structure are observed, e.g., there is a contraction of the cube consisting of four M1 and four M2 along the c-axis with M1 deviating slightly from the center of the cube. The structure can also be thought of as a modified bcc metal structure. The fragments of modified bcc metal networks can easily be recognized from Figure 9.

The shortest distance between metal and metal is 2.821Å compared with 2.86Å in elemental niobium or tantalum, thus it is clear that strong metal-metal bonding plays an important role in stablizing the structure.

The coordinations around each atom may be approximately thought of as capped distorted cubes. The M1 atom is surrounded by fourteen atoms: four M1 atoms (2.821Å distant) and four M2 atoms (2.925Å distant) at the corners of a distorted cube; and four M1 atoms (3.3304Å distant), one M2 atom (3.287Å distant) and one S atom (2.69Å distant) as capping atoms. For M2 the surrounding atoms are as follows: four M1 atoms (2.925Å distant) and four S atoms (2.541Å distant) at the corners of a distorted cube; one M1 atom (3.287Å distant), four M2 atoms (3.3304Å distant) and one S atom (3.12Å distant) as the capping atoms. The corners of the distorted cube around the S atom are four M2 atoms (2.541Å distant) and four S atoms (3.20Å distant) with one M1 atom (2.69Å distant), one M2 atom (3.12Å distant) and four S atoms (3.3304Å distant) as the capping atoms. The shortest distance between two sulfur atoms in two neighboring layers is 3.20Å, and apparently van der Waals interactions hold together the S-4M-S sandwiches. Van der Waals interactions lead to graphitic properties and the observed tendency of the crystal of the compound to be deformed by the drying of EPOXY glue.

Because there are one and five coordinating sulfur atoms around the M1 and M2 atom, respectively; this is the fifth example (along with $Nb_{21-x}Ta_xS_8$, $Nb_xTa_{11-x}S_4$, $Nb_{12-x}Ta_xS_4$ and $Nb_xTa_{5-x}S_2$) in which it has been found that the niobium percentage of a site occupied by both niobium and tantalum increases with the number of S atoms in the first coordination sphere of that position.

 $Nb_xTa_{2-x}S$ and $Nb_xTa_{5-x}S_2$ belong to a new class of layered compounds with two characteristics, namely layered compounds with robustly metallic regions separating the van der Waals layers and with a bcc basis. The robustly metallic region between two van der Waals layers can be easily seen in Figure 9. Inorganic and organic intercalation studies of layered transition metal disulfides, e.g., TiS₂, NbS₂ and MoS₂ (hcp setting), have been of interest for many years, ⁶⁴ and many useful properties have been found. Because there is a vital difference between this new class of the layered compounds and the transition metal disulfides, i.e., the previously discussed robustly metallic regions between the two settings of van der Waals layers, it can be expected that some new properties may be found from the organic and inorganic intercalation studies of the two new layered compounds, $Nb_xTa_{2-x}S$ and $Nb_xTa_{5-x}S_2$.

CRYSTAL STRUCTURE OF $Nb_{21-x}Ta_x S_8$ (x ≈ 6.2)

A. Preparation and Characterization

As previously described the reaction of Nb + Ta_2S^{19} ($n_{Nb}:n_{Ta2S} = 1:1$) was studied and a new ternary phase, Nb_x $Ta_{11-x}S_4$ (x = 4.92) was found. In this section the reaction of Ta + "Nb₂S" ($n_{Ta}:n_{Nb2S} = 1:1$) was desired. This reaction was studied using a method similiar to that previously described for the reaction of Nb + Ta_2S , i.e., arc-melting the cold pressed mixture of the reactants in an argon atmosphere and then annealing the sample at 1350°C for several hours in an induction furnace. From the Guinier powder pattern three phases were found in the sample; Nb_{21-x} Ta_xS_8 , Nb0⁶⁶ and unreacted Ta; respectively. The reflections of Nb_{21-x} Ta_xS_8 were similiar to those of Nb₂₁ S_8^{10} except for changes in the intensity of some reflections (the most obvious change was observed for the [110] reflection).

The structures of $Ta_6 S^{20,21}$ and $Nb_{21}S_8^{10}$ are different, and thus there was a motivation to know what products would be obtained from the reaction of $Ta_6S + Nb_{21}S_8$. This reaction was carried out using the same method as before (annealing temperature and time were 1350°C and 42h., respectively). Many gray-colored crystals were found in the annealed sample. The powder pattern could be indexed as one phase, $Nb_xTa_{21-x}S_8$ [16.817(2), 3.3450(9)Å, I4/m], according to the two-theta angles calculated with program PWDR⁵¹ (using data from the structure solution for $Nb_{21-x}Ta_xS_8$ (x \approx 6.2)). Powder diffraction data for this new compound are presented in Table 18. Intensities were calculated using the computer program PWDR. Positional parameters were used from the refined structure.

The quantitive analysis of the product from the reaction of $Nb_{21}S_8 + Ta_6S$ using EDAX in SEM indicated the presence of Nb-Ta-S ternary phase (Nb 52.08 at.%, Ta 17.94 at.% and S 27.83 at.% corresponding to the $Nb_{14.97}Ta_{5.16}S_8$).

B. Single Crystal X-Ray Investigation

A single crystal $(0.4mm \times 0.3mm \times 0.2mm)$ was picked from this sample and its quality was checked on a Weissenberg camera first.

Intensity data were collected using monochromatic Mo K α radiation, employing the 20- ω scan technique up to 50°(20) on a RIGAKU AFC6 single-crystal diffractometer. A total of 1045 reflections (hkl, -hkl) were monitored, and 416 unique reflections with $F^2 > 3\sigma(F_0^2)$ were obtained and used for the structure determination. The observed intensities were corrected for Lorentz-polarization and absorption effects with an empirical absorption coefficient of 443.03cm⁻¹. Based on three standard reflections measured every 150 reflections, there was no significant fluctuation or decay of the crystal. Subsequent data

h	k	1	20 _{obs}	20calc	I _{obs} b	Icalc
1	1	0	7.35	7.43	м	43.1
2	0	0	10.46	10.51	W	6.1
3	1	0	16.60	16.66	W	5.0
2	1	1	29.17	29.19	W	5.1
3	5	0	30.93	30.98	W	8.4
2	3	1	32.90	32.92	м	14.7
2	6	0	33.68	33.68	м	30.7
1	4	1	34.61	34.68	м	· 9.3
5 1	5 7	0 0	37.80	37.79 37.79	S	8.9 29.0
4 5	3 0	1 1	37.90	37.90 37.90	S	77.0 26.5
5	2	1	39.44	39.44	S	100.0
3	7	0	40.83	40.83	M	28.1
5	4	1	43.78	43.79	W	8.6
8	2	0	44.38	44.38	W	6.0
8	4	0	48.37	48.37	W	7.3
0	0	2	54.85	54.84	м	24.6

Table 18 X-ray powder diffraction of $Nb_{21-x}Ta_xS_8$ (x \approx 6.2) (Cu K α_1 radiation)^a (20 < 55°)

 $^{\rm a}$ 20 values of reflections with relative intensities $\rm I_{calc} \geq 5$ are listed.

b W, weak; M, medium; S, strong.

processing and structure calculations were performed with the program package TEXSAN.

After processing the intensity data, the structure model of $Nb_{21}S_8$ was used to initialize the refinement. After the refinement had converged and 50%Nb and 50%Ta was assigned on each metal position the multiplicities of metal positions were refined. The isotropic thermal parameters were refined with the concomitant refinement of the multiplicities for the metal positions and the secondary extinction coefficient.

The DIFABS⁵⁹ correction was applied to the data, which had been corrected with the empirical absorption correction, but had not been averaged after the isotropic refinement had completed. Finally the anisotropic refinement was carried out and the final R, R_w and GOF were 0.027, 0.043 and 1.17, respectively. The composition was determined to be $Nb_{14.8}Ta_{6.2}S_8$ from the refinement. The crystal data, atom coordinates, thermal parameters and bond distances are given in Tables 19, 20, and 21, respectively.

Observed and calculated structure factors are listed in Appendix E.

C. Results and Discussions

Figures 10 and 11 are the projections of the structure onto the xy-plane. This is a solid solution type compound having the

Table 19 Crystal data for $Nb_{21-x}Ta_xS_8$ (x \approx 6.2)

```
Formula
                                                     Nb14.8<sup>Ta</sup>6.2<sup>S</sup>8
                                                     I4/m(#87)
Space group
a, Å
                                                     16.817(2)^{a}
c, Å
                                                     3.3450(9)<sup>a</sup>
v, Å<sup>3</sup>
                                                     946.0(5)^{a}
z
                                                     2
d<sub>calc</sub>, g/cm<sup>3</sup>
                                                     9.665
Crystal size, mm<sup>3</sup>
                                                     0.4x0.3x0.2
\mu (MoK<sub>\alpha</sub>), cm<sup>-1</sup>
                                                     443.03
                                                     RIGAKU AFC6
Data collection instrument
Radiation (monochromated in
                                                     Mo K<sub>\alpha</sub> (\lambda = 0.71069 Å)
  incident beam)
Orientation reflections,
  number, range (2\theta)
                                                     25,14-35
Temperature, °C
                                                     22
                                                     2θ~ω
Scan method
                                                     hkl,-hkl
Octants measured
Data collection range, 2\theta, deg
                                                     0-50
No. refl. measured
                                                     1045
No. unique data, total
  with F_o^2 > 3\sigma (F_o^2)
                                                     416
No. parameters refined
                                                     45
Trans. factors, max., min.
                                                     1.000,0.807
Secondary ext. coeff. (10^{-7})
                                                     2.9658
R<sup>b</sup>, R<sub>w</sub><sup>c</sup>, GOF<sup>d</sup>
                                                     0.027, 0.043, 1.17
Largest shift/esd, final cycle
                                                     0.00
Largest peak, e/Å<sup>3</sup>
                                                     3.44 (0.12Å, M6)
```

a obtained from indexing of the powder pattern. b $R = \Sigma ||_{F_0} - |_{F_c} |/\Sigma|_{F_0} |$. c $R_w = [\Sigma_w(|_{F_0}| - |_{F_c}|)^2 / \Sigma_w|_{F_0}|^2]^{1/2}; w = 1/\sigma^2(|_{F_0}|).$ d $GOF = \Sigma((|_{F_0}| - |_{F_c}|) / \sigma_1) / (N_{obs} - N_{parameters}).$

Atom	Occupancy	x	У	B _{eq} (Å ²)	V11	U 22	U 33	U12
M1	92% Nb + 8% Ta	0.45032(7)	0.63579(8)	0.32(5)	0.0041(7)	0.0041(6)	0.0040(7)	0.0005(5)
M2	89% Nb + 11% Ta	0.19231(7)	0.80247(7)	0.34(5)	0.0060(7)	0.0035(7)	0.0034(7)	0.0005(5)
мз	86% Nb + 14% Ta	0	0	0.42(5)	0.0053(8)	0.0053(8)	0.005(1)	0
M4	75% Nb + 25% Ta	0.27740(6)	0.98218(6)	0.32(5)	0.0037(6)	0.0042(6)	0.0042(7)	-0.0011(4)
M5	54% Nb + 46% Ta	0.38325(5)	0.81483(5)	0.25(4)	0.0027(5)	0.0032(5)	0.0036(6)	0.0005(3)
M6	39% Nb + 61% Ta	0.08199(5)	0.54896(4)	0.22(4)	0.0027(5)	0.0027(5)	0.0029(6)	-0.0006(3)
S 1		0.2132(2)	0.6338(2)	0.2(1)	0.001(2)	0.004(2)	0.003(2)	0.000(1)
S2		0.1372(2)	0.9363(2)	0.3(2)	0.005(2)	0.002(2)	0.003(2)	0.000(1)

.

•

Table 20 Positional, thermal parameters and occupancies for $Nb_{21-x}Ta_xS_8$ (x \approx 6.2)

z = 0, U13, U23 = 0.

.

	33	10 pm, 1	M-S < 300 pm)	41			
M1	M2	2 ^a	310.3 (2)		м6	1	328.3 (1)
	мз	2	295.1 (1)		S1	2	248.5 (3)
	М4	2 ·	312.4 (2)				
	м5	1	321.5 (2)	м6	M4	2	294.3 (1)
	S2	4	253.7 (3)		м5	2	289.6 (1)
					M5	1	328.3 (1)
M2	M1	2	310.3 (1)		M6	4	282.1 (1)
	M2	2	311.1 (2)		м6	1	321.2 (2)
	M5	2	288.2 (1) .		S1	1	262.8 (4)
	M5	1	321.8 (2)				
	S1	2	254.3 (3)	S1	м2	2	254.3 (3)
	S 1	1	285.8 (4)		M2	1	285.8 (4)
	S2	1	243.4 (4)		M4	2	257.5 (3)
					M5	2	248.5 (3)
М3	M1	8	295.1 (1)		M6	1	262.8 (4)
	S2	4	254.4 (4)				
				S2	M1	4	253.7 (3)
M4	M1	2	312.4 (1)		M2	1	243.4 (4)
	M5	2	288.4 (1)		M3	1	254.4 (4)
	M5	1	333.0 (2)		M4	1	248.0 (4)
	M6	2	294.3 (1)				
	S1	2	257.5 (3)				
	S2	1	248.0 (4)				
M5	M1	1	321.5 (1)				
	M2	2	288.2 (1)				
	M2	1	321.8 (1)				
	M4	2	288.4 (1)				
	M4	1	333.0 (1)				
	M6	2	289.6 (1)				

Table 21 Interatomic distances (pm) for $Nb_{21-x}Ta_xS_8$ (x = 6.2) (M-M <

^a number of neighbors.

.

۰.

.

.

Figure 10 The crystal structure of $Mb_{21-x}Ta_xS_8$ viewed along the z-axis. Unit cell is marked by solid lines

Mat Z=0
Mat Z=1/2
Sat Z=1/2

Figure 11 The projection of $Nb_{21-x}Ta_xS_8$ on the xy-plane. Unit cell is marked by solid lines
Nb₂₁S₈-type structure in which tantalum partially substitutes for niobium, i.e., the metal coordinations are capped pentagonal and capped cubic prismatic while the sulfur coordinations are capped trigonal prismatic. The structure can be thought of as a modified bcc metal structure. The fragments of modified bcc metal networks can be easily recognized from Figure 11.

In the structure of $Nb_{21-x}Ta_xS_8$ (x \approx 6.2) each metal position is fractionally occupied by niobium and tantalum and the metal positions have been labeled so that as the metal indicator increases, the n_{Ta}/n_{Nb} ratio on that position also increases, i.e., from M1 to M6 the n_{Ta}/n_{Nb} ratio on the metal position increases. The numbers of coordinating atoms for M1, M2, M3, M4, M5 and M6 are 4, 4, 4, 3, 2 and 1, respectively, i.e., they follow the trend that niobium preferentially occupies the metal site bound to more sulfur atoms compared with tantalum.

The cell constants (a, b = 16.817; c = 3.345Å) of Nb_{21-x}Ta_xS₈ (x = 6.2) differ slightly from those (a, b = 16.794; c = 3.359Å) of Nb₂₁S₈. The radius of niobium and tantalum are nearly the same and Nb and Ta are in the same column of the periodic table, so the above similiarity is not unexpected. Because the atomic positions and cell constants of Nb_{14.8}Ta_{6.2}S₈ and Nb₂₁S₈ are nearly the same, it is not surprising that the bond distances in Nb_{14.8}Ta_{6.2}S₈ are nearly the same as those in Nb₂₁S₈.

CRYSTAL STRUCTURE of Nb_xTa_{2-x}S ($x \approx 0.2$)

A. Preparation and Characterization

High purity niobium (Aldrich Products) and sulfur (Fisher Scientific Co.) were put into a previously out-gassed silica tube in the molar ratio: $n_{Nb}:n_S = 2:1$ and the mixture was heated at 440° C until the yellow color of free sulfur disappeared and was then held at 800° C for 3 days in a tube furnace. TaS was synthesized using a similiar method. The mixture of "Nb₂S" (there is no known compound with the formula Nb_2S), TaS and Ta with $n_{Ta}:n_{Nb}:n_{S} \approx 1.5:0.2:1$, was pressed into a pellet and arcmelted three times in an argon atmosphere. The Guinier x-ray powder pattern of the arc-melted sample using Cu $K\alpha_1$ and silicon as an internal standard indicated that the major phase was a Ta_2S^{19} -type compound with a minor phase, 2s-Nb_{1+x}S₂⁶⁰-type compound. If the n_{Ta}/n_{Nb} was 4, keeping the molar ratio of metals and the nonmetal unchanged, the main product in the arcmelted sample was $Nb_xTa_{5-x}S_2$ and no Ta_2S -type compound was found in the powder pattern. After the arc-melted sample was annealed at 1400°C for 11h in an induction furnace, the powder pattern was nearly unchanged except that weak reflections from a β -Ta₆S-type compound appeared, possibly as the result of loss of sulfur during the annealing process. The cell parameters of $Nb_xTa_{2-x}S$ $(x \approx 0.20)$ were determined to be a = 7.3724(11), b = 5.5757(11)

and c = 15.1981(23)Å in space group Pbcm according to the twotheta angles calculated with program $PWDR^{51}$ (using data from the structure solution $Nb_{0.20}Ta_{1.80}S$). Powder diffraction data for this new compound are presented in Table 22. Intensities were calculated using the computer program PWDR. Positional parameters were used from the refined structure.

The quantitive analysis of the annealed sample using the electron dispersive analysis by x-rays method in a scanning electron microscope showed that two phases coexist in the sample. The ratio of n_{Ta}/n_{Nb} of major phase was determined to be 12.75, which corresponds to be $Nb_{0.15}Ta_{1.85}S$.

B. Single Crystal X-Ray Investigation

Many crystals were found in the inductively annealed sample. After their qualities were examined on a Weissenberg camera, one of them $(0.03 \times 0.01 \times 0.2 \text{ mm}^3)$ was used for collecting intensity data.

Intensity data were collected using monochromatic Mo K α radiation, employing the 20- ω scan technique up to 70°(20) on a RIGAKU AFC6 single-crystal diffractometer. A total of 6334 reflections (hkl, -hkl, hk-l, -hk-l) were monitored, and 581 unique reflections with F² > 3 σ (F²_O) were obtained and used for the structure determination. The observed intensities were corrected for Lorentz polarization and absorption effects with an

			(20 < 5)			·
<u>h</u>	k	1	20 _{obs}	$2\theta_{calc}$	I _{obs} b	Icalc
0	0	2	11.58	11.64	S	100.0
1	0	0	11.93	12.00	S	64.7
2	1	1	29.60	29.64	W	7.8
1	1	4	30.95	30.96	W	7.4
2	1	2	31.36	31.39	м	9.9
0	2	1	32.63	32.67	S	47.3
2	0	4	33.83	33.88	W	13.1
2	1	3	34.08	34.11	S	55.3
1	2	1	34.88	34.92	м	17.1
0	0	6	35.42	35.44	W	14.7
1	1	5	35.76	35.78	M	63.5
3	0	0	36.55	36.57	м	16.8
0	2	3	36.78	36.81	S	29.7
1 2	0 1	6 4	37.50	37.54 37.63	S	18.7 29.3
3	0	2	38.49	38.50	S .	35.0
1	2	3	38.80	38.85	S	79.4
3	1	0	40.05	40.10	м	29.4
3	1	1	40.53	40.56	м	38.6
1 2	1 2	6 1	40.98	41.01 41.04	S	52.0 44.5
2	0	6	43.30	43.34	M	35.9
3	1	3	44.01	44.06	м	13.0
2	2	3	44.46	44.51	M	15.6
1	1	7	46.51	46.55	м	21.1
3	1	4	46.90	46.95	м	13.1
0	0	8	47.83	47.88	W	6.0

Table 22 X-ray powder diffraction of $Nb_xTa_{2-x}S$ (x ≈ 0.2) (Cu K α_1 radiation)^a (20 < 55°)

a 20 values of reflections with relative intensities $I_{calc} \ge 5$ are

listed.

b W, weak; M, medium; S, strong.

empirical absorption coefficient of 951.01cm⁻¹. Based on three standard reflections measured every 150 reflections, there was no significant fluctuation or decay of the crystal. Subsequent data processing and structure calculations were performed with the program package TEXSAN.

The space group was assigned to be Pbcm, the same as that of Ta₂S. First an empirical absorption correction was applied with the max. and min. transmission factors of 1.000 and 0.350, respectively. Application of direct methods resulted in an electron map containing four strong peaks per asymmetric unit. These peaks were assigned as Ta and the refinement was initiated. Two sulfur positions were then obtained from a subsequent difference-Fourier syntheses of the electron density after initial refinements, and the multiplicities for the metal positions were refined after 50%Ta and 50%Nb was assigned on each metal position. Finally the isotropic thermal parameters were refined with the concomitant refinement of the multiplicities for the metal positions and the secondary extinction coefficient.

After isotropic refinement, F_c values for $Nb_{0.2}Ta_{1.8}S$ were calculated and used for a DIFABS⁵⁹ absorption correction for the F_o values in the mode that utilizes θ -dependent systematic deviations $|F_o| - |F_c|$. The ratio of the highest to the lowest transmission was 1.142. An anisotropic refinement was then carried out with the concomitant refinement of the multiplicities for the metal positions and the secondary extinction coefficient, and the final R, R_w and GOF were 0.040, 0.043 and 0.911, respectively. The composition was determined to be $Nb_{0.2}Ta_{1.8}S$ from the refinement.

The crystal data, atom coordinates, thermal parameters and interatomic distances for $Nb_xTa_{2-x}S$ (x \approx 0.20) are given in Tables 23, 24, 25 and 26, respectively.

Observed and calculated structure factors are listed in Appendix F.

C. Results and Discussions

Figure 12 is a projection of the structure onto the xz-plane. This is a solid solution type compound having the Ta_2S -type¹⁹ in which niobium partially substitute for tantalum, i.e., the structure can be viewed as linear chains of body-centered pentagonal antiprisms of metal atoms sharing faces in one direction and interconnected principally via sulfur atoms in the other two directions.

In the structure of $Nb_xTa_{2-x}S$ (x ≈ 0.20) three out of four asymmetrical metal sites are fractionally occupied by niobium and tantalum and the metal positions have been labeled so that as the metal indicator increases, the n_{Nb}/n_{Ta} ratio on that position also increases, i.e., from M2 to M4 the n_{Nb}/n_{Ta} ratio on the metal position increases. The metal site where only tantalum resides is surrounded by pentagonal antiprism consisting of metal Table 23 Crystal data for $Nb_xTa_{2-x}S$ (x ~ 0.2)

Formula	^{Nb} 0.20 ^{Ta} 1.80 ^S
Space group	Pbcm (#57)
a, Å	7.3724(11) ^a
b, Å	5.5757(11) ^a
c, Å	15.1981(23) ^a
z	12
d _{calc} , g/cm ³	12.029
Crystal size, mm ³	0.03x0.01x0.2
μ (MoK _{α}), cm ⁻¹	951.01
Data collection instrument	RIGAKU AFC6
Radiation (monochromated in	
incident beam)	Mo K _{α} (λ = 0.71069 Å)
Orientation reflections,	
number, range (20)	12,14-35
Temperature, [°] C	22
Scan method	2θ-ω
Octants measured	hkl,-hkl,hk-l,-hk-l
Data collection range, 2θ , deg	0-70
No. refl. measured	6334
No. unique data, total	
with $F_0^2 > 3\sigma(F_0^2)$	581
No. parameters refined	49 .
Trans. factors, max., min.	1.000,0.350
Secondary ext. coeff. (10 ⁻⁸)	5.227
R ^b , R _w ^c , GOF ^d	0.040, 0.043, 0.911
Largest shift/esd, final cycle	0.00
Largest peak, e/Å ³	4.87 (1.43Å, Ta)

a obtained from indexing of the powder pattern. b $R = \Sigma ||_{F_0} - |_{F_c} |/\Sigma|_{F_0}$. c $R_w = [\Sigmaw(|_{F_0}| - |_{F_c}|)^2 / \Sigmaw|_{F_0} |^2]^{1/2}; w = 1/\sigma^2(|_{F_0}|).$ d $GOF = \Sigma((|_{F_0}| - |_{F_c}|) / \sigma_i) / (N_{obs} - N_{parameters}).$

Table 24 Positional, thermal parameters and occupancies for $Mb_xTa_{2-x}S$ (x ~ 0.2)

Atom	Occupancy				×	У	Z	B _{eq} (Å ²)	
Tal						0.0084(3)	0.1320(4)	0.25	0.42(5)
M2	92%	Та	+	88	Nb	0.3523(3)	0.8715(4)	0.25	0.49(6)
мЗ	90%	Та	+	10%	Nb	0.7165(2)	0.8949(3)	0.34614(7)	0.53(4)
M4	83%	Ta	+	178	Nb	0.0964(2)	0.8941(3)	0.41025(7)	0.50(4)
S1						0.179(2)	0.25	0.5	0.6(3)
S2						0.412(1)	0.768(1)	0.4030(5)	0.9(3)

Table 25 Anisotropic thermal parameters for $Nb_xTa_{2-x}S$ (x ~ 0.2)

.

.

Atom	U11	U22	U33	U12	U13	U23
Tal	0.0051(8)	0.0047(6)	0.0060(5)	0.0006(8)	0	0
M2	0.0068(5)	0.0057(6)	0.0065(5)	0.0000(8)	-0.0001(4)	0.0001(5)
мз	0.0074(6)	0.0073(5)	0.0053(4)	-0.0004(8)	0.0011(4)	0.003(6)
м4	0.0051(8)	0.0071(8)	0.0065(6)	-0.001(1)	0	0
S1	0.007(4)	0.014(3)	0.013(3)	-0.002(4)	0.002(3)	0.005(2)
S2	0.015(6)	0.003(4)	0.004(3)	0	0.	0.001(3)

.

	pm	, M-S	< 300 pm)				
Ta1	Ta1	2 ^a	278.7 (1)		МЗ	1	292.0 (2)
	M2	1	284.5 (2)		M4	1	305.7 (3)
	M2	1	284.7 (2)		M4	1	307.0 (3)
	M2	1	294.0 (2)		М4	1	330.0 (3)
	м2	1	294.2 (2)		S1	1	244.3 (9)
	М3	1	289.4 (3)		S 1	1	250 (1)
	МЗ	1	289.6 (3)		S2	1	258.8 (5)
	мз	1	291.4 (3)				
	М3	1	291.6 (3)	M4	Ta1	1	291.9 (2)
	M4	1	291.9 (3)		Ta1	1	297.3 (2)
	M4	1	297.3 (3)		м2	2	308.1 (2)
					МЗ	2	305.7 (2)
M2	Ta1	1	284.5 (2)		МЗ	1	307.0 (2)
	Ta1	1	294.2 (2)		M3	1	307.2 (2)
	M2	2	312.6 (2)		МЗ	1	329.8 (2)
	M2	1	316.2 (3)		МЗ	1	333.0 (2)
	М2	1	329.3 (3)		S1	1	243.4 (8)
	МЗ	1	296.3 (3)		S1	1	243.4 (8)
	МЗ	1	325.2 (3)				
	МЗ	1	325.9 (3)	S1	M2	1	243 (1)
	M4	1	308.1 (2)		мз	1	244.3 (9)
	S1	1	243 (1)		МЗ	1	250 (1)
	S2	1	248.2 (4)		M4	1	243.4 (8)
	S2	1	257 (1)		S 1	1	295 (2)
M3	Ta1	1	289.6 (2)	S2	M2	2	248.2 (4)
	Ta1	1	291.4 (2)		M2	2	257 (1)
	M2	1	296.3 (2)		M3	2	258.8 (5)
	M2	1	325.2 (2)				
	M2	1	325.9 (2)				

يو المحمول ال

Table 26 Interatomic distances (pm) for $Nb_xTa_{2-x}S$ (x \approx 0.2) (M-M < 330 pm M-S < 300 pm)

^a number of neighbors.

.

Figure 12 The projection of $Nb_xTa_{2-x}S'(Ta_2S-type^{19})$ on the xz-plane

atoms, i.e., the center columns running through the pentagonal antiprisms of metals consist of only tantalum atoms. It can be expected that there are no coordinating sulfur atoms $(d_{M-S} < 3\text{\AA})$ for metal sites surrounded by pentagonal antiprisms of metals. The niobium-content increase with sulfur-coordination number is in agreement with the observed trend that niobium preferentially occupies the metal position bound to more coordinating sulfur compared with tantalum in the metal-rich compounds of the ternary Ta-Nb-S system. The numbers of coordinating sulfur atoms for Tal, M2, M3 and M4 are 0, 2, 3 and 3, respectively.

The cell constants (a = 7.372, b = 5.576, c = 15.198Å) of $Nb_xTa_{2-x}S$ (x ≈ 0.20) differ slightly from those (a = 7.379, b = 5.574, c = 15.19Å) of Ta_2S . The radius of niobium and tantalum are nearly the same and they are in the same column of periodic table, so the above similiarity is not unexpected. Because the atomic positions and cell constants of $Nb_{0.20}Ta_{1.80}S$ and Ta_2S are nearly the same, it is not surprising that the bond distances in $Nb_{0.20}Ta_{1.80}S$ are nearly the same as those in Ta_2S .

DISCUSSIONS OF THE METAL-RICH REGION IN THE TERNARY TA-ND-S SYSTEM

 $Nb_{x}Ta_{11-x}S_{4}$, $Nb_{12-x}Ta_{x}S_{4}$, $Nb_{x}Ta_{5-x}S_{2}$, $Nb_{x}Ta_{2-x}S$ (Ta₂Se-type), $Nb_{21-x}Ta_xS_8$, and $Nb_xTa_{2-x}S$ (Ta₂S-type) were found using the single crystal method. $Nb_xTa_{5-x}S_2$ (x \approx 1.72), $Nb_xTa_{2-x}S$ (x \approx 0.95) (Ta₂Se-type), Nb_{21-x}Ta_xS₈ (x \approx 6.2), Nb_xTa_{2-x}S (x \approx 0.2) (Ta₂S-type) and Cu_xNb₆S_{3-x} (x \approx 4.6)⁴⁰ (Ta₂P-type¹³) were successfully refined anisotropically, while $Mb_xTa_{11-x}S_4$ (x \approx 4.92) and $Nb_{12-x}Ta_xS_4$ (x \approx 5.26) could only be refined isotropically. The crystals of the last two compounds were obtained from the melted sample heated inductively while crystals of other compounds were obtained from the arc-melted samples for the layered compounds, $Nb_xTa_{5-x}S_2$ (x ≈ 1.72) and $Nb_xTa_{2-x}S$ (x ≈ 0.95) and from the non-melted samples for $Nb_{21-x}Ta_xS_8$ (x \approx 6.2) and $Nb_xTa_{2-x}S$ (x ≈ 0.20). The crystal of $Cu_xNb_6S_{3-x}^{40}$ was obtained from a sample initially inductively melted and then annealed for three hours at a temperature slightly lower than its melting point. Thus the failure of the anisotropic refinements of the last two compounds may stem from disorder in the solids because the samples do not crystalize well from the melt.

The compound $Nb_xTa_{6-x}S$ (α -Ta₆S-type²⁰ and β -Ta₆S-type²¹) was also found during the study of the ternary Ta-Nb-S system. A crystal of $Nb_xTa_{6-x}S$ (α -Ta₆S-type) was found in the sample

mentioned in the section of crystal structure of $Nb_xTa_{11-x}S_4$. The structure was refined to $R/R_w = 0.191/0.249$ and the composition was determined to be $Nb_{1.6}Ta_{4.4}S$. However, single crystals of this compound with good quality has not yet been obtained. One possible reason is that α -Ta₆S²⁰-type and β -Ta₆S²¹-type phases coexisted in the sample, and thus intergrowth crystals were formed in the sample. $Nb_xTa_{6-x}S$ (α -Ta₆S-type and β -Ta₆S-type) can be found in the sample with $n_{Ta}/n_{Nb} > 4$ and $(n_{Ta}$ + $n_{Nb})/n_S > 3$. The cell parameters were determined to be C2/c, 14.1214(168), 5.2849(41), 14.8331(182)Å, $\beta = 117.97^{\circ}$ (5) (determined by single crystal method on a CAD-4 diffractometer); and 5.258(13), 7.589(21), 7.626(26)Å, 59.31(20)°, 68.67(28)°, 77.36° for α -Ta₆S-type and β -Ta₆S-type Nb_xTa_{6-x}S, respectively. Because the radii of niobium and tantalum are nearly equal, the cell parameters show negligible change with x in $(Nb_xTa_{1-x})_yS_z$.

It is not surprising that in the Ta-Nb-S system solidsolution type compounds, $Nb_{21-x}Ta_xS_8$ (x \approx 6.2), $Nb_xTa_{2-x}S$ (x \approx 0.2) and $Nb_xTa_{6-x}S$ isostructural with the respective binary niobium-rich sulfides or tantalum-rich sulfides, are formed because of the chemical and size similiarities between the niobium and tantalum. What is surprising is the finding of four new compounds; $Nb_xTa_{11-x}S_4$ (x \approx 4.92), $Nb_{12-x}Ta_xS_4$ (x \approx 5.26), $Nb_xTa_{5-x}S_2$ (x \approx 1.72) and $Nb_xTa_{2-x}S$ (x \approx 0.95) in which the first three exhibit totally new structure types and the last one is isostructural with Ta_2Se^{31} , i.e., the finding that these compounds are not isostructural with Ta_2S or other binary metalrich compounds in the Ta-S or Nb-S system. The general formulae for the metal-rich compounds found in the Ta-Nb-S system and unknown in the respective two-component systems (Ta-S and Nb-S) are M_8S_4 (Nb_xTa_{2-x}S (x ≈ 0.95)), $M_{10}S_4$ (Nb_xTa_{5-x}S₂ (x ≈ 1.72)), $M_{11}S_4$ (Nb_xTa_{11-x}S₄ (x ≈ 4.92)) and $M_{12}S_4$ (Nb_{12-x}Ta_xS₄ (x ≈ 5.26)).

Fragments of the distorted elemental metal structures of tantalum and niobium (bcc-type structure) are common features in the structures of the compounds, $Nb_xTa_{11-x}S_4$, $Nb_{12-x}Ta_xS_4$, $Nb_xTa_{5-x}S_2$, $Nb_xTa_{2-x}S$ (Ta_2Se -type³¹) and $Nb_{21-x}Ta_xS_8$. Metalmetal distances comparable to those of the nearest neighbors in the elemental metal state, tantalum and niobium, were found in the solid-solution type metal-rich compounds in the ternary Ta-Nb-S system, and thus there is no doubt that there are numerous strong metal-metal interactions in these solids. These compounds are, in effect, modified intermetallic compounds in which the nonmetal bonds in such a way as to facilitate new metal-metal interactions.

Figure 13 is a plot showing the relation between sulfur coordination numbers and percentages of niobium on same metal

Figure 13 Plot of # of coordinating sulfur (C.N.(S)) vs. Nb% (f(Nb)) on metal sites for the ternary metal-rich compounds in the Ta-Nb-S system

positions for the ternary metal-rich compounds found in the Ta-Nb-S system. A general trend that niobium compared with tantalum preferentially occupies the metal positions bound to more sulfur atoms was observed. In $Nb_xTa_{11-x}S_4$ and $Nb_xTa_{2-x}S$ (Ta_2S -type) there were two positions (M2 and M3 in $Nb_xTa_{11-x}S_4$, and M3 and M4 in $Nb_xTa_{2-x}S$ (Ta_2S -type)) contradicting the general trend; these contradictions probably stem from the close niobium percentages between respective two metal positions in each compound and represent the experimental uncertainty.

In Part II the hypothetical binary Ta-S compounds isostructural with $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$ (Ta₂Se-type) were calculated to have lower average energies than those for the corresponding Nb-S hypothetical binaries, i.e., the binding energy of Ta-S is greater than that of Nb-S. Thus the principle: if in a metal-rich compound M-S has a greater binding energy than does M'-S, then new metal-rich structures and stoichiometries can be stabilized by metal-metal bonding in compounds in which M'-S bonding is numerically more important than M-S bonding was found regarding the $(Nb,Ta)_xS_y$ (x > y) compounds.

Because the compounds found in this research are solidsolution type compounds, they exist over a range instead of at a specific composition. Because of the chemical and size similiarities of tantalum and niobium, it is very hard to determine the exact percentage of niobium or tantalum by means of changes of the cell parameters or other means. In this research the fractions of tantalum and niobium were changed while the ratios of $(n_{Ta} + n_{Nb})/n_S$ (2.75, 3, 2.5, 2, 2.625 and 2 for $Nb_xTa_{11-x}S_4$, $Nb_{12-x}Ta_xS_4$, $Nb_xTa_{5-x}S_2$, $Nb_xTa_{2-x}S$ ($Ta_2Se-type^{31}$), $Nb_{21-x}Ta_xS_8$ ($Nb_{21}S_8-type^{10}$) and $Nb_xTa_{2-x}S$ ($Ta_2S-type^{19}$) respectively) were fixed, and then ranges in which the major components (> 90%) were of the desired phases were taken to be the approximate corresponding ranges of the respective solidsolution type compounds. Although the compounds found in this research were prepared using high-temperature techniques, the compounds vary in their temperature ranges of stability.

<u>Nb_xTa_{11-x}S</u>₄ This phase can exist when $n_{Ta}/(n_{Ta} + n_{Nb})$ is between 50% and 70% (x \approx 3.3 - 5.5) and the compound is synthesized using the method mentioned previously in the section on the crystal structure of Nb_xTa_{11-x}S₄ (x \approx 4.92). This phase is stable at temperatures below 1425°C, above which Nb_xTa_{11-x}S₄ will disproportionate to Nb_xTa_{2-x}S (Ta₂Se³¹-type) and other phases.

<u>Nb_{12-x}Ta_xS4</u> This phase can exist when $n_{Ta}/(n_{Ta} + n_{Nb})$ is between 35% and 60% (x ≈ 4.2 - 7.2) and the compound is synthesized using the method mentioned previously in the section on the crystal structure of Nb_{12-x}Ta_xS₄ (x ≈ 5.26). <u>Nb_xTa_{5-x}S₂</u> This phase can exist when $n_{Ta}/(n_{Ta} + n_{Nb})$ is between 70% and 80% (x ≈ 1.0 - 1.5) and the compound is synthesized using the method mentioned previously in the section on the crystal structure of Nb_xTa_{5-x}S₂ (x ≈ 1.72). This phase is stable at very high temperatures and the major product of disproportionation is Nb_xTa_{2-x}S (Ta₂Se-type) and Nb_xTa_{11-x}S₄ at temperatures between 1425°C - 1450°C and below 1425°C, respectively. Because Nb_xTa_{5-x}S₂ was synthesized by the arcmelting method and its melting point is around 1450C, the specific temperature above which this phase is stable has not been determined.

<u>Nb_xTa_{2-x}S (Ta₂Se-type³¹)</u> This phase can exist when $n_{Ta}/(n_{Ta} + n_{Nb})$ is between 55% and 60% (x \approx 0.8 - 0.9) and the compound is synthesized using the method mentioned previously in the section on the crystal structure of Nb_xTa_{2-x}S (x \approx 0.95). This phase is stable at temperatures above 1425°C, below which it will disproportionate to Nb_xTa_{11-x}S₄ and other phases.

<u>Nb_{21-x}Ta_xS₈ (Nb₂₁S₈-type¹⁰)</u> This phase can exist when $n_{Ta}/(n_{Ta} + n_{Nb})$ is less than 30% (x < 6.3) and the compound is synthesized using the method mentioned previously in the section on the crystal structure of Nb_{21-x}Ta_xS₈ (x ≈ 6.2).

 $\frac{Nb_{x}Ta_{2-x}S}{n_{Ta}/(n_{Ta} + n_{Nb})}$ This phase can exist when $n_{Ta}/(n_{Ta} + n_{Nb})$ is greater than 90% (x < 0.2) and the compound is synthesized using the method (annealing the arc-melted samples at 1300° C for 10h.), similiar to that mentioned previously in the section on the crystal structure of Nb_xTa_{2-x}S (x ≈ 0.2).

When $n_{Ta}/(n_{Ta} + n_{Nb})$ is between 60% and 70% and $(n_{Ta} + n_{Nb})/n_S$ between 2 and 2.7, arc-melted samples consist of the two layered compounds, $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$ (Ta_2Se -type). Because ranges for ternary metal-rich compounds in the Ta-Nb-S system were determined by the method mentioned above, it is difficult to know if both of the layered compounds, $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$ (Ta_2Se -type) can be formed in the above range or if first one is formed in the range of 70% - 80% for $n_{Ta}/(n_{Ta} + n_{Nb})$ and then the latter one formed in the range of 55% - 60% for $n_{Ta}/(n_{Ta} + n_{Nb})$. The same is true for the sample with the ratio $n_{Ta}/(n_{Ta} + n_{Nb})$ between 50% and 55% and the ratio $(n_{Ta} + n_{Nb})/n_S$ of 2 ($Nb_xTa_{2-x}S$ (Ta_2Se -type) and $Nb_{1-x}Ta_xS$ (NbS-type⁶⁵) coexisted).

In the experiments to determine the range for each solid solution, the smallest change in $n_{Ta}/(n_{Ta} + n_{Nb})$ was 5%.

It is amusing to note that early chemists spent several decades to separate tantalum and niobium and that now when these two metal elements are mixed on atom sites, totally new compounds are found to result. When neither tantalum nor niobium is the dominant metallic element, mixed Ta-Nb has been shown to exhibit new chemical properties different from either tantalum metal or niobium metal. Presumably because of the high reaction temperatures and the great similiarities between tantalum and niobium, the compounds in which metal positions are occupied by both tantalum and niobium were formed.

Measurements of electrical properties (superconductivity and electrical conductivity) of $Nb_xTa_{2-x}S$ (Ta_2Se^{31} -type) and $Nb_xTa_{5-x}S_2$ are being carried out by colleagues in Dr. Jonston's group of physics department at ISU. The compound $Nb_xTa_{2-x}S$ has been found to go superconducting below 5K.

PART II: EXTENDED HÜCKEL BAND CALCULATIONS

.

ON TWO NOVEL LAYERED COMPOUNDS:

 $Nb_xTa_{5-x}S_2$ (x \approx 1.72) and $Nb_xTa_{2-x}S$ (x \approx 0.95)

.

INTRODUCTION

Concepts of bonding and antibonding play a central role in the molecular orbital (MO) interpretation of chemical phenomena. For a diatomic molecule bonding and antibonding MO's are formed as in-phase and out-of-phase combinations of atomic orbitals, respectively. A bonding MO leads to a buildup of electron density in the region between two nuclei, while an antibonding MO causes charge withdrawal from this region. Thus electron occupation of the former results in bond strengthening, but that of the latter leads to bond weakening. These conclusions are valid for polyatomic molecules as well. They can be given a perburbation theoretical justification and form the basis of a general set of rules governing orbital interaction.⁶⁷

Valuable information of electronic structures of compounds, such as the electron configurations, constituting orbitals in a formed bond, the electron distribution on each atom, the strength of a bond of specific type, Fermi energy, density of states and so on can be obtained through theoretical studies, such as band calculations. From the information of electronic structure, some properties of a compound can be predicted.

Early transition metal-rich chalcogenides form a very important class with many new characteristics. Those have been

discussed in the General Introduction section of this dissertation. However, only a few band calculations have been carried out for this kind of compound, e.g., $M_2Ta_9S_6$ (M = Fe, Co, Ni)⁶⁸ and Ta_6S_n (n = 3, 4, 5)²⁴ and much work needs to be done in this area.

Two novel layered metal-rich compounds, $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$ found in this research exhibit a striking difference from the normal layered transition metal disulfides, e.g., TiS_2 , ⁶⁹ NbS_2^{70} and MoS_2 , ⁷¹ i.e., the van der Waals gaps are separated by robustly metallic regions. These novel materials can be expected to have some useful properties. Thus it is very interesting to see what kind of electronic structure they have and this will be helpful for the understanding of these two layered compounds. In addition the general trend that niobium preferentially occupies the metal positions bound to more sulfur atoms compared with tantalum was also observed for these two layered compounds. Thus an attempt was made to understand the reason for that trend from the point of view of their electronic structures. The effects of occupancies of niobium or tantalum on the electronic structure and the nature of chemical bonding interactions were elucidated by means of band calculations.

CALCULATION METHOD

The calculations used through this research are extended Hückel type, 72,73,74 using the tight-binding method. 75,76

A program, BIG5, written by Professor Burdett's group at University of Chicago was used to calculate the electronic structures of solids. Density of states (DOS) diagrams, crystal orbital overlap population (COOP) curves, and energy bands in reciprocal space can be obtained in the results.

Usually a primitive cell is used for this kind of calculations in order to save computer time. In this research three kinds of elements, tantalum, niobium and sulfur were involved. The parameters used for band calculations are given in Table 27. The atomic parameters of sulfur were from Clementi and Roetti.⁷⁷ The valence-state ionization energies (H_{ii} 's) for tantalum and niobium were obtained from a charge-iterative calculation⁷⁸ on Nb₅S₂ and Ta₅S₂ in the Nb_xTa_{5-x}S₂ structure.

Because band theory cannot deal explicitly with the compounds in which one position is occupied by two kinds of elements, some assumptions were made to enable the calculation.

The overall atomic ratios of Ta/Nb are observed to be close to 1.1 and 1.9 for $Nb_xTa_{2-x}S$ (x ≈ 0.95) ($Ta_2Se-type^{31}$) and $Nb_xTa_{5-x}S_2$ (x ≈ 1.72), respectively; and the atomic ratio of Nb/Ta on the metal site increases with the increase of the metal indicator in these two layered compounds. Thus (the layer

atom	orbital	H _{ii} , eV	ξ ₁ a	ξ2 ^a	c1 ^b	c2 ^b
Та	5d	-11.21	4.76	1.94	0.6815	0.6815
	6 s	-12.22	2.28			
	бр	-7.97	2.24			
Nb	4d	-11.97	4.08	1.64	0.6401	0.5516
	5s	-10.41	1.89			
	5p	-6.44	1.85			
s	3 s	-20.00	1.82			
	Зр	-13.30	1.82			
	3d	-8.00	1.50			

Table 27 Atomic parameters used in the calculations

 a Exponent in the double ξ function for d orbitals.

^b Slater-type orbitals exponents.

sequence of M1, M2 and S is M1M2S in $Nb_xTa_{2-x}S$) the arrangement $Ta_2Nb_2S_2$ is closer to the real one than is $Nb_2Ta_2S_2$ for $Nb_xTa_{2-x}S$, and (the layer sequence of M1, M2, M3 and S is M1M2M3S in $Nb_xTa_{5-x}S_2$) the arrangement $TaTa_2Nb_2S_2$ is closer to the real one than is $TaNb_2Ta_2S_2$ for $Nb_xTa_{5-x}S_2$ (If Nb were to be put on the M1 site and Ta on M2 and M3 sites, the atomic ratio of Ta/Nb would be 4 and this is not as close to the real ratio (1.9) as that (1.5) for the two arrangements listed above). The assumptions made are listed in Table 28 for these two layered compounds.

The k-points used for calculations can be calculated using the program BTET and STET⁷⁹ after the information about space group, lattice type and ratios of axes of the compound were known. The more k-points used for band calculations, the more accurate the results obtained; and also the more computer time needed. In program NEW5 there is a restraint on the number of kpoints used and the number of atomic orbitals used, i.e., the product of these two numbers must be less than 5000. For both of these two layered compounds seventy-two k-points were used for the band calculations.

To avoid becoming bogged down in too many system-specific details, we will stick to a presentation of the total density of states (DOS) plots, overlap populations, charge distributions, the crystal orbital overlap population (COOP) plots for the metal-metal bonding, and average energies in these systems.

		Nb _x Ta _{5-x} S ₂	(x ≈ 1.7	2) I4/mmm	
atom	site	occupancy %	C.N. ^a	arrangement 1 ^b TaTa ₂ Nb ₂ S ₂	arrangement 2 TaNb ₂ Ta ₂ S ₂
M1	2a	88.3 Ta + 11.7 Nb	0	Ta	Та
M2	4e	82.6 Ta + 17.4 Nb	1	Ta	Nb
мз	4e	37.3 Ta + 62.7 Nb	4	Nb	Та
S	4 e		8	S	S

Table 28 Assumptions in extended Huckel band calculations for $Mb_xTa_{5-x}S_2$ and $Mb_xTa_{2-x}S_3$

$Nb_xTa_{2-x}S$ (x \approx 0.95) P4/nmm						
atom	site	occupancy %	c.n.ª	arrangement 1 ^b Ta ₂ Nb ₂ S ₂	arrangement 2 Nb ₂ Ta ₂ S ₂	
M 1	2c	76.6 Ta + 23.4 Nb	1	Та	Nb	
M2	2c	28.2 Ta + 71.8 Nb	4	Nb	Та	
S	2c		8	S	S	

^a number of coordinating sulfur atoms.

^b arrangement 1 is closer to the real compound than arrangement 2.

BAND STRUCTURES OF Nb_xTa_{5-x}S₂ ($x \approx 1.72$) AND Nb_xTa_{2-x}S ($x \approx 0.95$)

A. Band Structure of $Nb_xTa_{5-x}S_2$ (x = 1.72)

The total density of states (DOS) for "Ta₅S₂", "TaTa₂Nb₂S₂", "TaNb₂Ta₂S₂" and "Nb₅S₂" are almost the same in shape and value. Although there is a local minimum in the DOS at the Fermi level, clearly there is no gap in the DOS around the Fermi level. Thus, Nb_xTa_{5-x}S₂ is expected to exhibit metallic properties, e.g., metallic electrical conductivity. As previously discussed in the Method Section, TaTa₂Nb₂S₂ is the model structure closest to the real arrangement. A plot of the DOS for TaTa₂Nb₂S₂ is given in Figure 14.

Information about the strength of a bond can be obtained from the corresponding overlap population. The difference in bonding between the two arrangements, $TaTa_2Nb_2S_2$ and $TaNb_2Ta_2S_2$ can be analyzed with the aid of the overlap population, the average energes, the values of the charge (valence electron) on each atom position and the crystal orbital overlap population (COOP) plots in these two arrangements.

The values of OP (overlap population) for each symmetryunique pair of atoms, the average energies and the values of the charge on each atom position for the two arrangements are given

Figure 14 Total DOS curve of $TaTa_2Nb_2S_2$ ($Nb_xTa_{5-x}S_2$ -type). Fermi level is marked by the vertical line

in Tables 29 and 30, respectively. The sums of OP's for all metal-metal bonds and for all bonds in the structure for the two arrangements, appropriately weighted to reflect the number of each symmetry-unique bond, are also listed in Table 29.

The values of summations (6.79 and 12.66 for metal-metal bonds only and all kinds of bonds, respectively) for arrangement 1 (TaTa₂Nb₂S₂) are greater than the corresponding values (6.43 and 12.53) for arrangement 2 (TaNb₂Ta₂S₂). This fact means that the metal-metal bonding and overall bonding are more effective in arrangement 1 than those of arrangement 2. The charges on the metal positions are more nearly equal in arrangement 1 (TaTa₂Nb₂S₂) than in arrangement 2 (TaNb₂Ta₂S₂). The smaller the difference between the valences of two atoms, the smaller the fraction of the bonding that is ionic in character. For two metals the smaller fraction of the bonding that is ionic in character, the larger the fraction of the metal-metal bonding. Thus the more effective metal-metal bonding in arrangement 1 compared to arrangement 2 can be seen from the charge distribution on the metal atoms in the two arrangements.

The difference (0.35) between summation of the OP's for all metal-metal bonds of the two arrangements is much greater than the corresponding value (0.13) for summation of the OP's for all bonds, i.e., including metal-metal, metal-sulfur and sulfur-

	A	
	arrangement 1 (TaTa ₂ Nb ₂ S ₂)	arrangement 2 (TaNb ₂ Ta ₂ S ₂)
average energy, eV	-555.655	-555.640
Fermi level, eV	-11.669	-11.817
overlap population		
M1-M1 (332pm) (2) ^a	0.15607	0.17597
M1-M2 (286pm) (8)	0.41355	0.36500
M1-M3 (337pm) (2)	0.10567	0.13679
M2-M2 (325pm) (1)	0.17752	0.11758
M2-M3 (293pm) (8)	0.24414	0.25704
M2-S (265pm) (2)	0.42815	0.29986
M3-S (251pm) (8)	0.55271	0.61847
M3-S (316pm) (2)	0.12611	0.13502
S-S (332pm) (4)	0.01855	0.01007
S-S (326pm) (4)	0.06746	0.05990
M2-M2 (332pm) (4)	0.18026	0.10231
M3-M3 (332pm) (4)	0.02581	0.07608
sum. of OP (M-M) ^b	6.78680	6.43298.
sum. of OP ^C	12.66104	12.53038

Table 29 Average energy, Fermi energy and overlap populations for two arrangements of $Nb_{x}Ta_{5-x}S_{2}$

^a the number of symmetry-unique bonds in one primitive cell.

^b the summation of OP for all metal-metal pairs in one primitive cell.

^C the summation of OP for all pairs of atoms in one primitive cell.

Nb _x Ta _{5-x} S ₂				
arrangement 1 (TaTa ₂ Nb ₂ S ₂)	arrangement 2 (TaNb ₂ Ta ₂ S ₂)			
5.101	4.888			
4.989	5.681			
5.292	4.737			
5.669	5.638			
	Nb _x Ta _{5-x} S ₂ arrangement 1 (TaTa ₂ Nb ₂ S ₂) 5.101 4.989 5.292 5.669			

Table 30 Charges on each atomic position for two arrangements in $Nb_xTa_{5-x}S_2$ (x ~ 1.72) and $Nb_xTa_{2-x}S$ (x ~ 0.95)

	Nb _x Ta _{2-x} S	
site	arrangement 1 (Ta ₂ Nb ₂ S ₂)	arrangement 2 (Nb ₂ Ta ₂ S ₂)
Ml	5.267	5.572
м2	5.117	4.830
S	5.616	5.597

sulfur bonds, between two arrangements in $Nb_xTa_{5-x}S_2$, and this fact means that the metal-metal bonding is facilitated by a trade off for a lesser amount of metal-sulfur and sulfur-sulfur bonding in arrangement 1 of $Nb_xTa_{5-x}S_2$ and presumably in $Nb_xTa_{5-x}S_2$ resulting in an increases in the overall bonding in arrangement 1 and in $Nb_xTa_{5-x}S_2$.

Thus, because arrangement 1 ($TaTa_2Nb_2S_2$) is closer to that of the real compound for $Nb_xTa_{5-x}S_2$, the calculations provide a basis for understanding why Nb preferentially occupies the metal position bound to more coordinating S. The fact that the average energy for arrangement 1 (-555.655 eV) is slightly lower than the corresponding one (-555.640 eV) for arrangement 2 in $Nb_xTa_{5-x}S_2$ also supports the explanation given above.

A COOP curve can yield information about the bonding (or antibonding) character of the system's crystal orbitals with respect to any specific symmetry-unique pair of atoms in the structure. There are many symmetry-unique metal-metal bonds in $Nb_xTa_{5-x}S_2$ and we are more interested in the overall metal-metal bonding in the structure. Thus the COOP curves are averaged over all the short metal-metal bonds in the structure and appropriately weighted to reflect the number of each symmetryunique bond for $Nb_xTa_{5-x}S_2$. There is no big difference in averaged COOP curves between two arrangements, $TaTa_2Nb_2S_2$ and $TaNb_2Ta_2S_2$, i.e., the Fermi levels lie in the bonding region and they are very close to the dividing lines between the bonding and antibonding regions in the two arrangements. Figure 15 is the plot of averaged COOP (Crystal Orbital Overlap Population) for $TaTa_2Nb_2S_2$. Thus the maximum metal-metal bonding is nearly achieved in $Nb_xTa_{5-x}S_2$.

The difference between the plots of COOP for arrangement 1 (TaTa₂Nb₂S₂) and arrangement 2 (TaNb₂Ta₂S₂) is hardly discernable. Thus the fact that arrangement 1 is favored over arrangement 2 cannot be explained from COOP curves, and thus it is not difficult to understand why there is a mixed metal occupation type (Nb_xTa_{5-x}S₂) formed rather than a segragated atom type (TaTa₂Nb₂S₂) formed.

B. Band Structure of $Nb_xTa_{2-x}S$ (x \approx 0.95)

There are striking resemblances between the band structures of $Nb_xTa_{2-x}S$ and $Nb_xTa_{5-x}S_2$.

There are no big difference among the DOS plots of "Ta₄S₂", "Ta₂Nb₂S₂", "Nb₂Ta₂S₂" and "Nb₄S₂". As previously discussed, Ta₂Nb₂S₂ is the closest model to the real arrangement. A DOS plot for Ta₂Nb₂S₂ is included in Figure 16. Metallic properties can be expected for Nb_xTa_{2-x}S because there is no gap at the Fermi level in the DOS plot.

The values of OP (overlap population) for each symmetryunique pair of atoms, the average energies and the values of the charge on each atom position for the two arrangements are given

.

·

Figure 15 Averaged metal-metal COOP curve of $TaTa_2Nb_2S_2$ ($Nb_xTa_{5-x}S_2$ -type). Fermi level is marked by the vertical line

Figure 16 Total DOS curve of $Ta_2Nb_2S_2$ (Ta_Se-type³¹). Fermi level is marked by the vertical line

in Tables 31 and 30, respectively. The sums of OP's for all metal-metal bonds and for all bonds in the structure for the two arrangements, appropriately weighted to reflect the number of each symmetry-unique bond, are also listed in Table 31.

The values of summations (2.80 and 5.73 for metal-metal bonds only and all kinds of bond, respectively) for arrangement 1 $(Ta_2Nb_2S_2)$ are greater than the corresponding ones (2.57 and 5.64) for arrangement 2 $(Nb_2Ta_2S_2)$. The charges on the metal positions are closer to each other in arrangement 1 $(Ta_2Nb_2S_2)$ than in arrangement 2 $(Nb_2Ta_2S_2)$. Thus the metal-metal bonding and overall bonding are more effective in arrangement 1 than those in arrangement 2.

The difference (0.23) for summation of OP for all metal-metal bonds between two arrangements is much greater than the corresponding value (0.09) for summation of OP for all bonds, i.e., including metal-metal, metal-sulfur and sulfur-sulfur bonds, between two arrangements in $Nb_xTa_{2-x}S$, and thus there is, relative to a completely random solid-solution, a bonding tradeoff of metal-sulfur and sulfur-sulfur bonding in arrangement 1 and presumably in $Nb_xTa_{2-x}S$ as well. The trade off increases the overall bonding in arrangement 1 and presumably in $Nb_xTa_{2-x}S$.

Thus, because arrangement 1 $(Ta_2Nb_2S_2)$ is closer to that of the real compound for $Nb_xTa_{2-x}S$, the calculations on this layered

		arrangement 1 (Ta ₂ Nb ₂ S ₂)	arrangement 2 (Nb ₂ Ta ₂ S ₂)
average energy	, eV	-486.215	-486.180
Fermi level, e	v	-11.603	-11.670
overlap popula	tion		
M1-M1 (333pm	.) (2) ^a	0.17346	0.11336
M1-M1 (282pm) (2)	0.51574	0.38513
M1-M2 (293pm	.) (4)	0.28520	0.29818
M1-M2 (329pm) (1)	0.16613	0.18757
M1-S (269pm) (1)	0.42488	0.29101
M2-M2 (333pm) (2)	0.05542	0.09862
M2-S (254pm	.) (4)	0.51506	0.58972
M2-S (312pm) (1)	0.18847	0.20213
S-S (333pm) (2)	0.03007	0.01936
S-S (320pm	.) (2)	0.09833	0.08735
sum. of OP (M-	м) ^b	2.79617	2.57451
sum. of OP ^C		5.72656	5.63995

Table 31 Average energy, Fermi energy and overlap populations for two arrangements of Nb₂Ta₂₋₂S

^a the number of symmetry-unique bonds in one primitive cell.

^b the summation of OP for all metal-metal pairs in one primitive cell.

^C the summation of OP for all pairs of atoms in one primitive cell.

compound again provided a basis for understanding why Nb preferentially occupies the metal position bound to more coordinating S. The conclusion was also supported by the fact that the average energy for arrangement 1 (-486.215 eV) is slightly lower than the corresponding one (-486.180 eV) for arrangement 2 in $Nb_{x}Ta_{2-x}S$.

As previously discussed for $Nb_xTa_{5-x}S_2$, the averaged COOP curve for $Nb_xTa_{2-x}S$ was calculated. There is no big difference in averaged COOP curves between two arrangements, $Ta_2Nb_2S_2$ and $Nb_2Ta_2S_2$, i.e., the Fermi levels lie on the dividing line of the bonding region and the antibonding regions in the two arrangements. Figure 17 is the plot of averaged COOP (Crystal Orbital Overlap Population) curve for $Ta_2Nb_2S_2$. Thus the maximum metal-metal bonding is achieved in $Nb_xTa_{2-x}S$.

The difference between the plots of COOP for arrangement 1 $(Ta_2Nb_2S_2)$ and arrangement 2 $(Nb_2Ta_2S_2)$ is hardly discernable. Thus the fact that the arrangement 1 is favored over arrangement 2 cannot be explained from COOP curves, and thus it is not difficult to understand why there is a mixed metal occupation type $(Nb_xTa_{2-x}S)$ formed rather than a segragated atom type $(Ta_2Nb_2S_2)$ formed.

•

Figure 17 Averaged metal-metal COOP curve of $Ta_2Nb_2S_2$ ($Ta_2Se-type^{31}$). Fermi level is marked by the vertical line

C. Comparison of Band Structures of Nb_xTa_{5-x}S₂ (x \approx 1.72) and Nb_xTa_{2-x}S (x \approx 0.95)

Both Nb_xTa_{5-x}S₂ and Nb_xTa_{2-x}S are expected to exhibit metallic properties from the band calculations. Although there are no gaps in the plots of DOS around the Fermi level, a decrease of the DOS values at the Fermi level was observed from Nb_xTa_{5-x}S₂ to Nb_xTa_{2-x}S. This sort of behavior seems to be a common characteristic of systems in which the extension of the metal-metal bonded network is reduced. The number of metal layers between two sulfur van der Waals layers decreases from five in Nb_xTa_{5-x}S₂ to four in Nb_xTa_{2-x}S. The maximum metal-metal bonding is nearly achieved in Nb_xTa_{5-x}S₂ and achieved in Nb_xTa_{2-x}S. The decrease of DOS values at the Fermi levels and the formation of maximum metal-metal bonding in the metal-rich compounds were also observed in Ta₆S_n (n = 3, 4, 5).²⁴

Band calculations carried out for the two novel layered compounds, $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$ were approximate ones because band theory cannot deal explicitly with solid solution type compounds, i.e., compounds in which some symmetry-unique metal positions are occupied by two kinds of elements; nevertheless these calculations provided us with qualitative information about metal-metal bonding and explanation of the observed general trend that niobium compared with tantalum preferentially occupies the

metal positions bound to more sulfur atoms in these two layered compounds.

That the metal-metal bondings are more effective in arrangements 1 ($TaTa_2Nb_2S_2$ and $Ta_2Nb_2S_2$) than the corresponding ones in arrangements 2 ($TaNb_2Ta_2S_2$ and $Nb_2Ta_2S_2$) in $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$, respectively; can also be understood in terms of electronegativity. The electronegativities of Ta, Nb and S are 1.5, 1.6 and 2.5,⁸² respectively. The difference of electronegativities between Ta and S (1.0) is greater than that between Nb and S (0.9), i.e., Ta would lose more electron density to S than would Nb were they equivalently bound to S. Thus Nb in comparison with Ta is more effective in forming metal-metal bonds when equivalently bound to S. Thus the arrangements 1 are favored over arrangements 2 by the enhanced metal-metal bonding of arrangements 1 for both $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$.

The average energy differences between two arrangements (0.015 and 0.035 eV) are so small and the reacting temperatures (above 2000°C) are so high that entropic stabilization drives fractional occupancy of each metal position, rather than the idealized TaTa₂Nb₂S₂ and Ta₂Nb₂S₂ arrangements in Nb_xTa_{5-x}S₂ and Nb_xTa_{2-x}S, respectively.

Although band calculations were not carried out for nonlayered metal-rich compounds found in the ternary Ta-Nb-S system, $Nb_xTa_{11-x}S_4$, $Nb_{12-x}Ta_xS_4$, $Nb_{21-x}Ta_xS_8$ and $Nb_xTa_{2-x}S$ (Ta_2S^{19} type); the observed general trend mentioned in the last paragraph can also be explained in terms of electronegativity.

From the band calculations it was found that the hypothetical binary Ta-S compounds isostructural with $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$, respectively, have lower average energies ("Ta_5S_2", -556.571 eV; "Ta_4S_2", -487.661 eV) than those for niobium corresponding ones ("Nb_5S_2", -552.676 eV; "Nb_4S_2", -484.253 eV). Thus it is the more effective metal-metal bonding that controls the arrangements of tantalum and niobium rather than the Ta-S and Nb-S binding energy in these two layered compounds.

GENERAL SUMMARY

The metal-rich compounds, $Nb_xTa_{11-x}S_4$, $Nb_{12-x}Ta_xS_4$, $Nb_xTa_{5-x}S_2$, $Nb_xTa_{2-x}S$ ($Ta_2Se-type^{31}$), $Nb_{21-x}Ta_xS_8$ and $Nb_xTa_{2-x}S$ ($Ta_2S-type^{19}$) that have resulted from this research in high temperature chemistry have played an important role in developing understanding of the nature of interactions in solids. The structures of $Nb_xTa_{11-x}S_4$, $Nb_{12-x}Ta_xS_4$, $Nb_xTa_{5-x}S_2$ and $Nb_xTa_{2-x}S$ ($Ta_2Se-type^{31}$) are not found for the pure niobium sulfides and tantalum sulfides, i.e., an inherent feature of these sulfide structures is that the metal atom positions are fractionally occupied by niobium and tantalum, and thus the mixture niobium plus tantalum is seen to have a different structural chemistry than do the pure elements themselves. In particular they have demonstrated the role that the metal-metal bond can play in stabilizing novel structures and stoichiometries.

The ternary compounds mentioned above taken together are representative of an entirely new chemistry, namely the formation of site averaged intermetallic, metal-rich sulfides. These compounds exhibit regions in which the extensive metal-metal bonding that is characteristic of intermetallics and alloys together with regions in which there is metal-sulfur bonding. They open the door to the development of new materials with novel structures, with properties characteristic of intermetallics and solid-solution alloys and with the potential of modifying the

electronic properties by altering the nature and quantity of the nonmetal components.

.

FUTURE WORK

In view of this new principle found for ternary solid solution type metal-rich compounds in the Ta-Nb-S system, a series of M-M'-X (M and M' are early transition metals; and X is P, As, S or Se) should be investigated to prove the validity of this new principle in ternary solid-solution type metal-rich compounds. A generalization of the ideas regarding the bonding in $(Nb,Ta)_{x}S_{y}$ (x > y) compounds presented above is: if in a metal-rich compound M-S has a greater binding energy than does M'-S, then new metal-rich structures and stoichiometries can be stabilized by metal-metal bonding in compounds in which M'-S bonding is more important than M-S bonding.

This work is only the beginning of the investigation of ternary metal-rich compounds with mixed metal occupations, and it is certain that many new compounds can be found in this area. Here only a few suggestions are listed.

As for the (Nb, Ta) pair, many early transition metal pairs, such as (Ti, Zr), (Zr, Hf) and (Ti, Hf) in Group IVB can form binary metal-rich pnictides and chalcogenides with different structure type. Thus they are good targets to be investigated in the ternary M-M'-X systems for finding compounds with new structure types and exploring the range of validity of the principle found in this research.

In a ternary M-M'-X system around the ratio $n_M/(n_M + n_{M'})$ of 0.5 there is a possiblity of forming new solid-solution type compounds different from the respective binary compounds because around that ratio the "mixed metal" or "hybrid metal" has the greatest difference from either M or M'. Thus maybe one day new layered compounds with new or variable numbers of metal layers and with new or variable metal occupation between the van der Waals gaps will be synthesized.

It is worthwhile to try to synthesize $Nb_xTa_{5-x}S_2$ -type or $Nb_xTa_{2-x}S$ -type layered compounds in M-M'-X (M = Ta or Nb; M' = Ti, Mo, W; X = S or Se) systems because TiS_2 , MoS_2 and WS_2 have been proven to be a useful battary material and useful catalytic materials in the petrolum industry, respectively. New materials in these systems would have the applications mentioned above and exhibit new properties because of the robustly metallic regions separating the van der Waals gaps.

Because $Nb_xTa_{2-x}S$ (x ≈ 0.95 , P4/nmm) is isostructural with Ta₂Se, rather than with any known binary Nb-rich sulfides or Tarich sulfides, an attempt should be made to synthesize "Ta₁₁Se₄" (Nb_xTa_{11-x}S₄-type), "Ta₁₂Se₄" (Nb_{12-x}Ta_xS₄-type) and "Ta₅Se₂" (Nb_xTa_{5-x}S₂-type).

REFERENCES CITED

.

.

1.	Poeppelmeier, K. R.; Corbett, J. D. Inorg. Chem. 1977, 16, 1107
2.	Simon, A.; Mattausch, H.; Holzer, N. <u>Angew. Chem.</u> 1976, <u>88</u> , 685
3.	Lokken, D. A.; Corbett, J. D. <u>Inorg. Chem.</u> 1973, <u>12</u> , 556
4.	Pedersen, B.; Grønwold, F. <u>Acta Cryst.</u> 1959 <u>12</u> , 1022
5.	Franzen, H. F.; Graham, J. <u>Z. Kristallogr.</u> 1966, <u>123</u> 133
6.	Owens, J. P.; Conard, B. R.; Franzen, H. F. <u>Acta Cryst.</u> 1967, <u>23</u> , 77
7.	Conard, B. R.; Franzen, H. F. <u>High Temp. Sci.</u> 1971, <u>3</u> , 49
8.	Franzen, H. F.; Smeggil, J. G.; Conard, B. R. <u>Mat. Res. Bull.</u> 1967, <u>2</u> , 1087
9.	Franzen, H. F.; Norrby, L. J. <u>Acta Cryst.</u> 1968, <u>B24</u> , 601
10.	Franzen, H. F.; Beineke, T. A.; Conard, B. R. <u>Acta Cryst.</u> 1968, <u>B24</u> , 412
11.	Chen, HY.; Tuenge, R. T.; Franzen, H. F. <u>Inorg. Chem.</u> 1973, <u>12</u> , 552
12.	Owens, J. P.; Conard, B. R.; Franzen, H. F. <u>Acta Cryst.</u> 1974, <u>B30</u> , 427
13.	Nylund, A. <u>Acta Chem. Scand.</u> 1966, <u>20</u> , 2393
14.	Lundström, T.; Ersson, NO. <u>Acta Chem. Scand.</u> 1968, <u>22</u> , 1801
15.	Anugul, S.; Pontchour, C.; Rundqvist, S. <u>Acta Chem. Scand.</u> 1963, <u>27</u> , 26
16.	Rundqvist, S. <u>Acta Chem. Scand.</u> 1966, <u>20</u> , 2427
17.	Hassler, E. <u>Acta Chem. Scand.</u> 1971, <u>25</u> , 129
18.	Ahlzen, PJ.; Rundqvist, S. <u>Z. Kristal.</u> 1989, <u>189</u> , 117
19.	Franzen, H. F.; Smeggil, J. G. <u>Acta Cryst.</u> 1969, <u>B25</u> , 1736

20.	Franzen, H. F.; Smeggil, J. G. <u>Acta Cryst.</u> 1970, <u>B26</u> , 125
21.	Harbrecht, B. <u>J. Less-Common Met.</u> 1988, <u>138</u> , 225
22.	Wada, H.; Onoda, M. <u>Mat. Res. Bull.</u> 1989, <u>24</u> , 191
23.	Conard, B. R.; Norrby, L. J.; Franzen, H. F. <u>Acta Cryst.</u> 1969, <u>B25</u> , 1729
24.	Kim, SJ.; Nanjundaswamy, K. S.; Hughbanks, T. <u>Inorg. Chem.</u> 1991, <u>30</u> , 159
25.	Chen, HY.; Franzen, H. F. <u>Acta Cryst.</u> 1972, <u>B28</u> , 1399
26.	Lundström, T.; Snell, PO. <u>Acta Chem. Scand.</u> 1967, <u>21</u> , 1343
27.	Knausenberger, M.; Brauer, G.; Gingerich, K. A. <u>J. Less-</u> <u>Common Met.</u> 1965, <u>8</u> , 136
28.	Nawapong, P. C. <u>Acta Chem. Scand.</u> 1966, <u>20</u> , 2737
29.	Rundqvist, S. <u>Nature</u> 1966, <u>211</u> , 847
30.	Rundqvist, S. <u>Acta Chem. Scand.</u> 1962, <u>16</u> , 1
31.	Harbrecht, B. <u>Angew. Chem., Int. Ed. Engl</u> 1989, <u>28</u> , 1660
32.	Franzen, H. F. <u>Prog. Solid St. Chem.</u> 1978, <u>12</u> , 1
33.	Cotton, F. A.; Wilkinson, G. <u>Advanced Inorg. Chem.</u> 5th ed.; John Wiley & Sons: New York, 1988; pp 787-803
34.	Smeggil, J. G. Ph.D. Dissertation, Iowa State University, 1969
35.	Harbrecht, B.; Franzen, H. F. <u>J. Less-Common Met.</u> 1985, <u>113</u> , 349
36.	Harbrecht, B.; Franzen, H. F. <u>Z. anorg. allg. Chem.</u> 1987, <u>551</u> , 74
37.	Harbrecht, B. J. Less-Common Met. 1988, 141, 59
38.	Harbrecht, B.; Franzen, H. F. Z. Kristallogr. 1989, <u>186</u> , 119
39.	Harbrecht, B. <u>Z. Kristallogr.</u> 1988, <u>182</u> , 118

.

- 40. Yao, X.; Franzen, H. F. J. Less-Common Met. 1990, 161, L37
- 41. Harbrecht, B.; <u>5. Vortragstagung der Fachgruppe</u> <u>Festkörperchemie, GDCH</u> Ungewöhnliche Valenzzustände in Festkörpern, Erlangen, F.D.G., Sept, 28-30, 1988
- 42. Harbrecht, B., Universität Dortmund, Fachbereich Chemie, F.R.G., personal communication, 1989
- 43. Sleight, A. W. Science 1988, 242, 1519
- 44. Pool, R. Science 1989, 244, 914
- 45. Pool, R. Science 1989, 246, 755
- 46. Amato, I. Science 1991, 252, 644
- 47. DiSalvo, F. J. Science 1990, 247, 649
- 48. Harbrecht, B.; Schmidt, S. R.; Franzen, H. F. <u>J. Solid State</u> Chem. 1984, <u>53</u>, 113
- 49. Guinier, A. <u>X-Ray Crystal. Tech.</u>; Hilger and Watts: London, 1952.
- 50. Imoto, H., Ames Laboratory, Iowa State University, Ames, Iowa, unpublished research, 1978
- 51. Clark, C. M.; Smith, D. K.; Johnson, G. J. "A Fortran IV Program for Calculating X-Ray Powder Diffraction Pattern-Version 5," Department of Geosciences, Pennsylvania State University, University Park, PA, 1973
- 52. Ziebarth, R. P., Ames Laboratory, Iowa State University, Ames, IA, unpublished research, 1984
- 53. Takusagowa, F., Ames Laboratory, Iowa State University, Ames, IA, unpublished research, 1981
- 54. Rietveld, H. M. J. Appl. Cryst. 1969, 2, 65
- 55. Wiles, D. B.; Young, R. A. <u>J. Appl. Cryst. Chem.</u> 1981, <u>14</u>, 149
- 56. Jeffery, J. W. <u>Methods in X-Ray Crystallography</u>; Academic Press: London, 1971

5.0, Molecular Structure Corporation, The Woodlands, TX, 1989 Sheldrick, G. M.; SHELXS-86, Programs for Structure 58. Determination, Universität Göttingen, Germany, 1986 59. Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158 60. Jellinek, F; Brauer, G.; Müller, H. Nature 1960, 185, 376 61. Rundqvist, S. Acta Chem. Scand. 1960, 14, 1961 62. Adolphson, D. G.; Corbett, J. D. Inorg. Chem. 1976, 15, 1821 63. Daake, R.; Corbett, J. D. Inorg. Chem. 1977, 16, 2029 64. Whittingham, M. S. Prog. Solid State Chem. 1978, 12, 41 65. Kadijk, F.; Jellinek, F. <u>J. Less-Common Met.</u> 1969, <u>19</u>, 421 66. Bowman, A. L.; Wallace, T. C. Acta Crystall. 1966, 21, 843 67. Whangbo, M.-H.; Hoffmann, R. J. Chem. Phys. 1978, 68, 5498 68. Calhorda, M. J.; Hoffmann, R. Inorg. Chem. 1988, 27, 4679 69. Chianelli, R. R.; Scanlon, J. C.; Thompson, A. H. Mat. Res. Bull. 1975, 10, 1379 70. Powell, P. R.; Jacobson, R. A. J. Solid State Chem. 1981, <u>37</u>, 140 Wildervanck, J. C.; Jellinek, F. Z. anorg. allg. Chem. 1964, 71. 328, 309 72. Hoffmann, R. J. Chem. Phys. 1963, 39, 1397 73. Hoffmann, R.; Lipscomb, W. N. J. Chem. Phys. 1962, 36, 2179 Hoffmann, R.; Lipscomb, W. N. J. Chem. Phys. 1962, 37, 2872 74. 75. Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093 76. Whangbo, M.-H.; Hoffmann, R.; Woodward, R. B. Proc. R. Soc., London, 1979, <u>A336</u>, 23

152

57. TEXSAN: Single Crystal Structure Analysis Software, Version

- 77. Clementi, E.; Roetti, C. <u>At. Nucl. Data Tables</u> 1974, <u>14</u>, 177
- 78. Alvares, S., Department of Chemistry, Cornell University, personal communication, 1984
- 79. Miller, G. J., Department of Chemistry, Iowa State University, personal communication, 1983

.

80. Pauling, L. <u>The Chemical Bond</u>; Cornell University Press: Ithaca, 1967; p 64

ACKNOWLEDGEMENTS

The author wishes to thank his major adviser, Professor Hugo F. Franzen for his valuable advice, guidance, encourgement and patience throughout this study.

The author would also like to thank Professor Gordon J. Miller for his advice and instruction for doing band calculations.

The author is indebted to Professor R. A. Jacobson and his group members for their assistance with and use of the diffractometers and crystallographic programs. Dr. W. Straszheim is sincerely appreciated for doing the EDAX analysis.

The help, discussions, suggestions, patience and friendship from author's group and other friends are warmly remembered. It is author's pleasure to acknowledge Jim Anderegg and Shirley Standley for their assistance and friendship.

Special thanks are extended to author's parents, Guo-Wang Yao and Huan-Ge Zhou, author's sister and brother for their love, support and sacrifice to help him reach his dreams.

Finally the author's wife, Jun Xu is deeply thanked for her understanding, patience, support and devotion.

APPENDIX A OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (x10) FOR $Nb_xTa_{11-x}S_4$ (x = 4.92)

k	1	Fo	FC	БigF	k	1	Fo	Fc	sigF	r k	1	Fo	FC	БigF
1	***	h =	0 ***	*	4	-7	1 189	1219	55	1	-11	1014	908	103
					- 4	-6	2325	2423	173	1	-10	2208	2079	78
0	2	1013	1179	34	4	1	671	582	59	1	-6	1818	2049	84
0	4	1272	1358	80	4	5	3644	3620	107	1	- 4	795	761	46
Ð	6	3079	2994	84						1	-3	576	551	47
ŏ	Å	1883	1734	97	****	***	h =	2 ***	****	ī	ĩ	984	965	38
ī	-11	2247	2015	119			••	-		- ī	5	968	898	37
1		5650	5355	147	٥	-12	3665	3367	108		ž	1555	1657	60
- 7	7	2703	3071	72	ň		4354	3972	210	- 7	é	3487	3444	05
- 1		865		5.8	ň		546	576	26	- î	ĕ	2020	2053	95
5	_6	2126	2422	118	ň	-1	1005	1700	50	1	12	2023	1700	101
2	-0	10204	10033	463	Ň	-1	1202	2072	41	5		1051	1047	111
2		10304	10033	103	Ň	ć	1373	20/2	105	2	-11	1731	1607	111 111
4		330	702	/0		2	3930	394/	102	4	-10	1/40	1033	
4	8	1410	14/1	140	Ų.		2007	18/8	93	2	-0	454/	48/4	118
2	-9	4083	4130	140	1	-13	2030	1805		2	-4	1294	1205	11
3	-1	525	397	82	1	-5	782	863	36	2	-1	2286	2291	65
3	7	611	570	71	1	-3	9684	10347	243	2	5	2028	1968	68
4	-6	1567	1584	64	1	1	672	568	53	2	-9	3907	3956	107
- 4	0	12064	11432	310	1	2	4593	4847	117	3	-10	1731	1627	125
					1	8	2547	2474	79	3	-9	1515	1569	74
***	****	h =	1 ***	****	1	10	1884	1791	118	3	-8	2262	2595	149
					1	12	4427	3922	123	3	-7	1056	1216	55
0	-12	776	676	90	2	-12	3327	3012	103	3	-4	623	559	79
0	-11	2885	2604	91	2	-7	1370	1566	127	3	2	702	506	105
0	-5	6694	6924	244	2	-6	2866	3251	80	3	6	1538	1464	61
0	-4	1340	1499	45	2	-1	1391	1368	49	4	-6	3304	3295	101
0	1	1470	1246	41	2	0	1520	1626	60	4	1	1415	1484	82
0	3	428	599	35	2	9	3458	3374	125	4	- 4	756	746	122
0	6	4459	4442	115	3	-8	1603	1852	172	4	5	1286	1264	65
0	7	2120	2069	69	3	-3	6310	6766	508			•		
0	8	834	832	65	3	-2	3453	3168	212	***	***	h =	4 ***	***
0	10	937	707	117	3	10	1512	1412	63					
1	-4	1528	1779	49	4	-7	980	1036	69	0	-12	984	939	80
1	-3	8577	8988	216	4	Ó	1043	1055	59	0	-11	2148	1998	116
ī	ī	869	829	44	Å	i	823	890	87	ŏ	-10	1677	1433	124
ī	2	3276	3352	85	ă	3	633	284	102	Ō	-8	1353	1240	56
ī	Ā	3932	3691	106	Ā	Ā	2220	2182	87	ŏ	-6	3368	3807	88
1	ŏ	2262	2220	70	•	v	2220		0.	ň	_5	2898	3237	77
1	12	2665	2329	118	****		h -	2 ***	****	. ň		887	912	120
5	_11	2460	2205	01				3		ň		447	362	46
5	~11 2	2403	2653	51	•	1 2	767	774	07	ň	Š	601	502	20
5	-0-2	5176	5052	122	Ň	-12	2205	2102	97	Ň	<u>,</u>	1002	2020	55
4	- 5	1010	1175	132	Ň	-11	2300	1072	104	Ň		1120	1010	53
4	-4	1219	11/3	20	v v	-10	2033	1723	104	Ň	12	2046	2620	24
4	-1	333	1767	111	v v	-/	730	5000	100	1	12	1040	2030	244
4		100/	1/2/	111	v	-0	7220	2074	703		-12	2060	7041	211
2	-3	1002	1/25	/3	Ň	-1	3333	4033	25	- +		4707	1604	171
2	-9	2501	2//3	80	Ň	3	844	133	33	- +	- 9	1000	1004	1/1
3	-4	1234	1226	85	Ŭ	4	1409	1001	30	- +	-0	3030	4008	30
3	-2	2284	2286	230	0	5	2024	24/0	104	1	-4	2058	2000	04
	-		L 7 7	77	~			7 5 / 5				2.705		AB

. .

.

2 _9

3 -10

k	1	Fo	Fc	sigl	Fk	1	Fo	FC	sigF	k	1	Fo	Fc	sigF
***	***	h =	8 ***	***	1	-2	891	857	36	3	0	11229	12044	285
					1	-1	4418	3 4431	112	3	1	2341	2342	119
0	-8	680	784	61	1	- 4	1630	1476	56	3	4	709	780	70
0	-7	1750	1824	61	1	5	3045	5 2786	84	- 4	-3	1980	1869	83
0	-5	1572	1596	90	1	6	3987	3779	134	4	2	2537	2404	84
0	-2	1247	1237	45	1	7	2461	2453	7.5					
0	3	11017	10632	276	2	-8	4043	4197	175	***	****	h = 3	11 ****	****
0	4	1058	975	71	2	-6	625	5 595	93					
0	- 6	603	574	98.	2	2	5084	5040	130	0	-12	3441	3196	103
0	10	2289	2263	91	2	3	6913	6715	176	0	-10	1083	1119	53
0	12	3720	3251	235	2	9	830	924	116	0	-9	2255	2596	68
1	-11	847	831	78	2	11	769	698	82	0	- 3	6021	5773	152
1	-9	2472	2598	74	3	-6	2859	2760	149	0	-2	1299	1305	46
1	-6	6179	5867	198	3	-5	1928	1961	76	0	-1	1808	1785	52
1	-5	781	732	51	3	-1	2973	2925	116	0	- 4	3353	3312	89
1	-2	1126	1152	47	3	- 4	1077	1007	81	0	7	1887	1771	69
1	0	1701	1802	57	3	7	1925	5 1848	71	Ó	8	1605	1707	64
1	1	4457	4502	113	4	2	3348	3262	97	0	11	1600	1537	81
1	- 4	1444	1419	62	4	3	4620	4335	125	1	-7	1142	1091	108
1	7	1136	1101	47						1	- 5	8240	7606	208
. 1	8	1098	1171	66	****	***	h =	10 ***	***	1	-3	1407	1398	52
1	12	3184	2818	202						1	6	3137	2966	87
2	-10	1780	1996	196	0	-6	1202	1031	64	1	10	2229	2335	72
2	-5	1334	1274	53	0	-4	1319	1288	60	1	11	3354	3229	117
2	-2	994	993	41	0	- 3	3906	5 3808	101	1	12	970	1016	76
2	3	8457	8270	214	0	-1	584	503	60	2	-11	1363	1356	72
2	- 4	705	779	87	0	2	4887	4862	124	2	-10	876	994	127 .
2	7	1625	1545	66	0	5	488	468	72	2	-7	1525	1498	59
3	-9	1910	2054	68	0	9	4776	5364	124	2	- 4	2782	2681	79
3	-8	887	860	74	0	11	1532	1434	60	2	- 3	4683	4577	121
3	-1	2990	3024	124	0	12	662	563	106	2	1	1356	1370	56
3	0	1431	1357	78	1	-9	980	1256	60	2	2	1112	1065	46
3	2	806	712	59	1	-7	744	666	108	2	8	1501	1458	60
3	- 4	1111	992	51	1	-6	3266	3050	103	2	9	1979	2269	74
3	6	4466	4274	192	1	-2	1135	5 1147	42	3	-7	893	850	102
3	7	909	806	75	1	0	18013	18353	452	3	-6	2332	2182	80
- 4	3	5579	5258	148	1	1	3407	3535	88	3	- 5	5492	5484	144
- 4	5	840	828	77	1	- 4	1120) 1117	55	3	-1	950	986	88
					1	8	1613	1717	60	3	3	902	928	50
***1	***	h =	9 ***	***	1	11	1315	5 1327	60	- 4	- 4	1557	1749	62
					2	-11	1239	1282	59	- 4	2	706	701	84
0	-13	1392	1265	70	2	-9	4234	4677	113	- 4	3	3047	2962	95
0	-9	1052	1062	48	2	-4	1046	1030	56					
0	-6	834	748	57	2	-3	3013	2954	84	***1	****	h = 1	L2 ****	***
0	2	6512	6323	164	2	-2	3807	3765	100					•
0	3	8916	8527	224	2	6	934	844	82	0	-12	3623	3377	113
0	5	1072	981	46	3	-9	935	5 960	67	0	-10	1467	1595	148
0	8	4283	4891	111	3	-8	1162	1286	63	0	-8	1879	1967	87
1	-11	2158	2121	83	3	-6	2292	2212	82	0	-7	3250	3025	90
1	-8	764	855	53	3	-2	771	724	95	0	-6	800	684	104

k	1	Fo	Fc	sigF	r k	1	Fo	FC	sigI	r k	1	FO	FC	sigF
0	-5	527	639	74	1	10	2417	2812	74	0	-7	4027	3816	108
0	-4	1308	1242	63	2	-7	568	538	88	0	-6	3394	3053	93
0	-3	8257	7848	208	2	-6	676	668	70	0	- 5	807	768	52
0	0	1330	1356	54	· 2	-1	890	829	42	0	-4	638	622	54
0	2	6131	6160	183	2	- 4	848	926	55	0	1	3886	3743	113
1	-12	3208	3139	97	2	8	5020	4788	133	0	2	1452	1466	50
1	-11	1723	1739	63	2	9	2060	2104	77	0	3	2345	2313	66
1	-9	3151	3301	109	2	10	1203	1325	160	Ó	9	1126	1192	50
1	-1	737	642	42	3	-8	636	515	95	0	10	764	858	54
1	0	870	855	42	3	-6	2235	2141	78	1	-12	2472	2695	151
1	3	1879	1833	58	3	-5	1883	1744	71	1	-7	706	624	67
1	4	2396	2310	95	3	2	558	555	71	1	-6	749	623	64
1	5	1441	1322	57	3	- 4	1710	1674	64	1	- 5	1254	1188	50
1	6	1882	1717	68	3	9	2943	3152	254	1	-4	800	699	49
1	7	1858	1845	70						1	-2	828	808	101
1	. 8	864	778	121	****	***	h = 3	14 ****	****	1	3	1080	1024	42
2	-10	1262	1405	54						ī	8	1312	1152	55
2	-7	2758	2584	84	0	-8	1696	1609	68	ī	9	1486	1519	59
2	-4	1050	986	105	Ó	-4	590	575	69	- ī	11	1813	2167	148
2	-3	6335	6212	162	Ō	Ō	2676	2807	75	2	- Ē	1040	1061	74
2	õ	1042	1122	51	Ŏ	2	418	315	53	2	-6	2580	2573	80
2	ž	4810	4863	124	Ŏ	3	1574	1497	65	ž	-2	1245	1200	49
2	8	1643	1696	62	ŏ	6	3526	3289	96	2	-1	2855	2932	79
3	-9	2543	2583	88	·ŏ	7	1776	1762	126	2	3	1895	1857	65
3	-7	1529	1374	57	ŏ	11	859	865	119	2	5	571	637	75
3	-6	1282	1266	139	i	-11	2268	2458	77	2	7	3487	3298	98
3	-3	1148	1244	47	ī	-6	3194	3054	89	2	á	4060	3892	183
3	ŏ	641	532	85	ī	-5	5490	5173	141	3	-8	911	893	78
3	Ă	1604	1605	59	ī	-4	2655	2551	75	3	3	592	704	69
4	-3	4100	3996	114	ī	-1	1302	1290	54	4	ī	1918	1876	98
4	2	3296	3129	98	ī	ō	699	654	48	4	3	1256	1199	58
-	-			• •	ī	ĝ	1704	1822	70	-	-			
***	****	h = 1	3 ****	***	ī	10	987	1165	51	***	****	h = 1	16 ***	***
			-		2	-11	722	786	70					
0	-10	1451	1484	53	2	-8	1453	1391	60	0	-10	1261	1374	48
Ó	-8	5678	5520	146	2	-6	2847	2790	84	Ó	-7	2895	2618	84
Ó	-4	1265	1177	49	2	-4	589	445	70	Ó	-6	707	623	66
Ŏ	i	890	1044	81	2	Ō	2195	2189	73	Ŏ	-Š	535	401	69
ŏ	3	1041	1022	41	2	ž	1277	1226	51	Ŏ	-Ž	1645	1637	101
ŏ	6	864	798	55	2	7	1678	1509	65	ŏ	ō	5666	5667	145
ŏ	ġ	2108	2414	114	3	-5	3803	3819	105	Ō	3	1172	1146	82
1	-12	971	951	70	3	-4	1855	1819	126	Ō	4	550	441	62
1	-9	3864	4073	104	ž	-1	949	882	49	Õ	8	1786	1827	72
ī	-7	786	702	60	3	6	2144	2255	95	Ō	11	693	815	73
- ī	-6	3118	2855	88	4	-3	1006	817	160	ĩ	-11	2415	2768	88
ī	-5	2479	2403	73	à	õ	1464	1361	75	ī	-9	2849	2833	85
ī	_ā	2508	2402	72	-	•				ī	-5	1373	1327	94
ī	-2	889	813	38	****	***	h =	15 ****	****	ī	- 4	6154	5866	157
ī	-1	1050	931	39						1	-3	856	847	43
ī	Ā	787	706	77	0	-8	4723	4477	124	ī	ō	497	481	67
	-				2	-			-	-	-			

k	1	Fo	Fc	sigF	' k	1	Fo	FC	sigl	Fk	1	Fo	Fc	sigF
1	1	655	594	49	3	6	1132	2 1161	106	2	-1	4529	4563	118
1	6	2658	2450	138	4	-1	2199	2183	165	2	7	1989	1941	77
2	-7	2356	2264	79						3	-8	3858	3785	125
2	-2	1432	1366	60	***	***	h =	18 ***	****	3	-6	906	924	67
2	-1	1764	1732	61						3	-5	901	879	64
2	0	4536	4519	121	0	-12	1893	3 1978	88	3	-3	2488	2539	148
2	3	935	949	82	0	-9	1154	1059	54	3	2	4688	4831	124
2	8	1606	1599	102	0	-8	1184	1159	71	4	-1	2965	3075	195
2	10	1169	1215	156	. 0	-3	703	3 729	72	4	2	1160	1130	96
3	-9	2112	2227	103	0	0	1263	3 1256	66					
3	-5	1006	963	66	0	1	6555	5 5715	812	***1	****	h =	20 ***	****
3	-4	4211	4297	114	0	- 4	2294	2137	69					
3	3	582	634	68	0	6	6834	1 6324	174	0	-7	1064	992	83
3	6	1913	1839	77	0	10	832	2 917	59	0	-6	3574	. 3544	9 B
4	-2	1028	927	64	0	11	636	5 806	105	0	0	9712	9474	246
- 4	-1	1151	1134	111	1	-7	1880) 1788	75	0	4	984	934	48
4	0	2858	2920	102	1	-5	1804	1 1736	67	0	8	1685	1619	92
4	3	674	634	112	1	-3	7083	3 7344	686	0	9	992	870	61
					1	0	1120	1126	54	1	-7	1900	1715	71
****	***	h = 1	7 ***	****	1	1	1387	7 1306	201	1	-6	1142	1128	111
					1	8	1861	1832	105	1	1	2425	2368	69
0	-10	1649	1723	67	1	9	863	3 924	67	1	3	4100	4230	417
0	-9	1407	1338	59	1	10	2149	2357	77	1	9	4743	4541	127
0	-7	2189	2021	74	2	-8	902	2 996	70	2	-8	1371	1400	59
0	-6	4031	3803	108	2	-6	5215	5 5412	389	2	-2	1133	1045	45
0	-1	4687	4014	656	2	-4	1872	2 1787	68	2	0	7719	7798	198
0	5	4859	4585	126	2	-2	1718	3 1706	145	2	1	3582	3572	96
0	8	1123	1112	81	2	-1	4686	4695	· 164	2	4	922	807	51
0	11	2075	2248	75	2	Ū,	965	937	58	2	9	704	703	93
1	-9	819	820		2	3	023	5 610	103	5	-2	3/40	3/94	103
	-/	1803	1/50	1/5	3	- /	1543	2 1338	212	3	-1	1/29	1/00	200
	-4	4/3/	4540	123	3	-2	1000	14/9	20	3	2	3044	1115	209
- +	- 3	3244	31/0	151	3	-1	1020	5 9/4	40	2	4	1122	1112	21
÷.	Ę	1481	1439	5/	3	Š	- / 04 E 0 0 4	6 609 5 6300	141	3	2	1453	1 2 4 1	É0
÷	2	1700	1676	01	3	3	1040	0 000	141	3		1433	5107	142
÷.	0	1,00	12/0	20	3	5	21240	5 1204	167		1	2000	272/	143
1	11	2744	2110	0.4	4		1220) JIJA	105	4	*	2331	2333	34
	. 11	1700	1007	20		4	1111	2 1100	105	***		h -	21 ***	****
2	_10	1/33	15/1	100		4	1111	, TTO	/0				61 A.A.A.	
2	-10	1640	1725	125	***		h -	10 +++	****	٥	-10	3003	3161	122
2		2053	3957	111				19		ň	-10	906	842	142
5		1276	1252	134	•	_7	2280	2226	76	ň	-5	6419	6007	164
2	-1	3276	3268	134	ň	_6	2600	2 2 2 2 3 1	63	ŏ	 	1821	1857	291
2	Å.	2250	22/0	00	ň	-0	21/1	1000	258	ĭ	-11	1974	2064	103
2	0	3639	3643	52	1	-11	801	7 020	112	1		804	763	98
2	_7	1341	1305	61	1	-11	505	, 530 7 4878	197	1	-0-7	2134	2250	280
2	-/	3343	3325	01	1		1220	1 1255	51	5	-10	2609	2827	379
2	1	020	1037	52	1	-0	7260	6640	606	2	0	1644	1586	137
2	-1	2225	2296	77	5	_2	1683	2 1659	62	2	-2	1063	1124	57
-					-	-				_	-			

k	1	Fo	Fc	sig	r k	1	Fo	Fc	sig	F k	1	Fo	Fc	sigF
2	3	1698	1681	105						2	8	1454	1526	68
2	5	5240	5147	137	***	****	h = .	24 ****	****	3	-4	922	884	60
3	-7	1656	1757	67						3	-2	2375	2378	80
3	-1	1051	1072	63	0	-5	5806	5745	255	3	-1	1930	2010	78
3	2	690	524	68	0	-4	2205	2409	275	3	0	4167	4115	121
3	3	982	842	55	Ō	-1	1100	1117	43	3	Š	727	635	104
3	Ā	1939	2015	173	ō	ō	695	702	72	-	•			- • •
ž	6	940	047	67	ĭ	_ ů	1 377	1488	202	***		h	77 ***	
Ā	_ž	1071	1122	65	1	_6	1460	1452	126				_ /	
7		705	724	77	•	-0	2751	1033	140	•	•	2151		
- 4	2	105	134		5	Ĕ	E100	2000	1 7 4			2121	2113	121
					2	- 5	2103	4984	134	Ţ	-5	0381	6243	164
***1		n = 23	2 ***		2	-4	2254	2069	191	2	-9	1344	1242	76
_	-				2	-1	939	939	137	2	-3	1657	1623	193
0	-9	1661	1662	64	2	0	708	600	75	2	1	1818	1817	77
0	-8	1453	1432	81	3	-4	665	633	74	3	-2	1185	1216	58
0	-6	1395	1428	89	3	-1	764	747	63	3	-1	1946	1872	75
0	0	3254	3300	92	3	0	2203	2095	91	3	5	5082	4851	136
0	3	3002	2886	84	3	6	1220	1288	60		-		. –	
Ó	7	1362	1334	115	_	-				***	***	h = 3	28 ***	***
1	-10	1417	1534	217	****	***	h = 1	25 ****	****			••		
ī	_3	3401	3209	93			••			٥	-10	2037	2096	83
1	-5	2226	2279	77	٥	-10	1910	1762	127	ň	-10	5106	E1.20	265
•	Š	4200	4101	445	Ň	-10	2467	1702	137	Ň	-3	2120	2132	233
÷	4	4200	4101	114	Ň	- 3	240/	2349	113	0	-1	2950	2910	138
Ŧ		3419	3540	562	U U	-2	2083	1996	137	0	0	2824	2827	88
2	-7	948	1159	152	1	-8	3141	3122	245	0	2	3404	3033	494
2	-6	1214	1225	125	1	-1	2331	2241	197	0	5	1479	1437	180
2	0	2762	2731	87	1	2	2080	1913	221	1	0	4375	4385	120
2	1	658	607	57	1	5	934	1024	88	1	1	4222	4176	252
2	3	2370	2422	116	2	-8	1785	1817	96	1	2	2249	2032	270
2	4	2269	2202	74	2	-7	1425	1485	127	1	6	4646	4607	124
3	Ó	1790	1784	89	2	-3	1998	1999	109	- Ž	-8	2488	2837	264
3	2	3062	3024	89	2	-2	1721	1707	73	2	-2	2794	2628	82
ž		2344	2275	77		-7	2696	2748	88	5	ត ត	2288	2445	88
5	Ă	1220	1 2 1 1	66	5	- /	2050	763	20	5	Ň	2416	2576	264
2		2265	1211	100	2	- 2	1 4 1 3	1430	60	4	<u></u>	2410	2320	204
3		2/05	2//0	100	2	-2	1413	1439	02	4	3	433/	4440	100
4	U	T/95	1823	84	3	-1	1204	16/4	51	3	-2	1208	1542	107
					3	3	993	1012	59	3	-1	3152	3215	93
1	***	h = 23	3 *	****						3	0	3255	3291	106
			_		***1	***	h = 1	26 ****	***	3	4	904	854	63
0	-10	1904	2225	206										
0	2	1273	1158	49	0	-4	4695	4625	124	***1	***	h = 2	29 ****	***
0	9	2409	2703	344	0	0	797	793	69					
1	-11	906	1034	134	1	-4	1349	1177	82	0	-8	4801	4724	214
1	-8	6053	5868	158	ī	-2	3235	3102	303	õ	2	5453	5179	389
ī	Ă	1181	1261	111	- ī	_1	2805	2669	308	ň	5	714	787	75
5		1462	12/0	241	1	-1	5501	5507	145	1	_0	035	1024	78
4		1403	1247	241	<u></u>	2	15501	1400	140	- 1	- 7	2022	2001	500
2	-2	932	980	50	2	-2	T22A	T403	00	- 1	-1	5035	2001	280
3	-5	970	933	00	2	Q	687	680	85	Ť	3	1535	1278	60
3	2	1085	1023	54	2	4	4290	4020	131	1	- 4	2986	2820	109
3	- 4	914	926	58	2	6	1097	1111	91	1	5	1082	993	58

• •

.

k	1	Fo	FC	sigl	r k	1	Fo	FC	sig	r k	1	Fo	FC	sigF
1	7	1512	1584	61	2 -	-2	1998	1989	168	2	-3	1679	1693	141
2	-8	4335	4186	284	2 -	-1	781	774	87	2	-2	3063	2983	162
2	2	4449	4501	162	2	0	2769	2695	97	2	-1	1985	1961	81
3	-4	2054	· 2218	86	3 -	-2	727	737	86	2	0	3362	3426	111
3	-3	1148	1170	63	3	0	2683	2669	103					
3	-1	2859	3033	91	3	3	2029	2111	83	****	***	h = 3	37 ***1	***
3	2	1533	1593	175				_		_				
					*****	t th	h = 3	13 ***1	***	0	-4	2220	2119	262
****		n = ;	SU ###1		•	-			~ ~	0	-3	2398	2422	166
•	•	3774	2502	100	0 -	-5	1540	1359	96	0	5	5841	5564	154
Ň	- 7	3/34	3203	100	1	ö	4980	4943	234	1	-5	1236	1087	.97
Ň	- /	20/5	621	20	- - -	-0	1511	1/20	233	Ť	4	3110	3455	308
Ň	-4	1222	1002	193	1	ž	1011	2501	444	4	-4	2166	10/0	723
ň		3/02	2597	103	2	Ĕ	1100	1100	112	4	3	2100	21/1	305
ŏ	1	4457	4561	117	1.	.2	1104	1112	100	****		h - 1		
ĭ	_õ	870	804	130	5 -		11/4	***3	100					
ī	ŏ	2706	2513	89	*****	**	h = 3	4 ***	***	0	0	5016	6129	160
ī	6	3280	3274	166			•• - •			ŏ	ĭ	2016	2118	201
2	-4	845	948	105	0 -	-3	2348	2515	76	ŏ	6	3273	3216	143
2	-1	3083	3123	89	ō -	-1	1761	1824	97	i	-2	1891	1795	114
2	ō	647	444	98	Õ	ō	1750	1841	89	ī	ō	3746	3823	114
2	3	3878	3955	106	<u> </u>	.7	1563	1505	215	ī	ĩ	2988	3061	155
3	0	1920	1927	99	1 -	-5	4379	4170	121	ī	3	2949	3168	176
3	1	1815	1912	197	1	0	706	761	102	2	0	5321	5429	150
					1	4	1293	1286	204	2	1	1756	1886	157
****	***	h = 3	31 ****	****	2	0	1724	1604	94					
-	_				2	1	1663	1625	62	****	* * *	h = 3	19 ****	***
0	-7	2366	2194	177	2	3	2058	2219	79					
0	6	2691	2541	84						0	-4	3268	3585	95
U I	8	2290	2238	243	*****	* #	n = 3	5 ***	****	0	-3	2154	2138	123
4	-8	95/	1617	167	•	•	1 5 0 0	1400		Ŭ,	-2	1465	1415	170
	-2	10/0	101/	101	<u> </u>	• •	TDDA					1701		99
1	~		1707	1 4 5	n –	. 7	2001	2660	93	1	-1	1701	2020	115
5	Ē	3355	1787	145	0 -	-7	2801	2568	93 314	1	-1	1701 2252	2020 2254	113
-	5	3355	1787 2935 2243	145 439 85	0 -	-7	2801 1449 1847	2568	93 314 114 277	1 2 2	-1 2 1	1701 2252 1665	2020 2254 1821 1287	113 130
3	562	3355 2231 1231	1787 2935 2243 1244	145 439 85 60	0 - 0 - 1 - 1 -	-6	2801 1449 1847 2578	2568 1357 1830 2506	93 314 114 277 81	0 1 2 2	-1 2 1 2	1701 2252 1665 1271	2020 2254 1821 1287	113 130 92
3	5623	3355 2231 1231 1368	1787 2935 2243 1244 1391	145 439 85 60 159	0 - 0 - 1 - 1 - 1 - 1	-7 -6 -2	2801 1449 1847 2578 1130	2568 1357 1830 2506 1117	93 314 114 277 81 57	1 2 2	-1 2 1 2	1701 2252 1665 1271	2020 2254 1821 1287	113 130 92
333	5 6 2 3 4	3355 2231 1231 1368 1413	1787 2935 2243 1244 1391 1437	145 439 85 60 159 61	0 - 0 - 1 - 1 - 1 - 2	7 -6 -6 -2 1 2	2801 1449 1847 2578 1130 1377	2568 1357 1830 2506 1117 1397	93 314 114 277 81 57 179	1 2 2	-1 2 1 2	1701 2252 1665 1271 h = 4	2020 2254 1821 1287	113 130 92
3 3 3	56234	3355 2231 1231 1368 1413	1787 2935 2243 1244 1391 1437	145 439 85 60 159 61	0 - 0 - 1 - 1 - 1 - 2	-7-6-6-2-1-2	2801 1449 1847 2578 1130 1377	2568 1357 1830 2506 1117 1397	93 314 114 277 81 57 179	0	-1 2 1 2	1701 2252 1665 1271 h = 4 1673	2020 2254 1821 1287 0 ****	113 130 92
3 3 3	5 6 2 3 4	3355 2231 1231 1368 1413 h = 3	1787 2935 2243 1244 1391 1437	145 439 85 60 159 61	0 - 0 - 1 - 1 - 1 2	-7-6-6-2-1-2	2801 1449 1847 2578 1130 1377 h = 3	2568 1357 1830 2506 1117 1397	93 314 114 277 81 57 179	0 1 2 2 ***** 0 1	-1 2 1 2 ***	1701 2252 1665 1271 h = 4 1673 3953	2020 2254 1821 1287 0 **** 1723 3972	113 130 92 *** 76 314
3 3 3 ****	5 6 2 3 4	3355 2231 1231 1368 1413 h = 3	1787 2935 2243 1244 1391 1437 32 ****	145 439 85 60 159 61	0 - 0 - 1 - 1 - 2	-76-62-12	2801 1449 1847 2578 1130 1377 h = 3	2568 1357 1830 2506 1117 1397	93 314 114 277 81 57 179	0 1 2 2 ***** 0 1 1	-1 2 1 2 *** -5 -3 -1	$1701 \\ 2252 \\ 1665 \\ 1271 \\ h = 4 \\ 1673 \\ 3953 \\ 3206 \\ $	2020 2254 1821 1287 0 **** 1723 3972 3241	113 130 92 *** 76 314 96
3 3 3 ****	5 6 2 3 4 ***	3355 2231 1231 1368 1413 h = 3 1812	1787 2935 2243 1244 1391 1437 32 **** 1826	145 439 85 60 159 61 ****	0 - 0 - 1 - 1 - 2	766212 * 7	2801 1449 1847 2578 1130 1377 h = 3 2816	2568 1357 1830 2506 1117 1397 16 ****	93 314 114 277 81 57 179 ****	0 1 2 2 ***** 0 1 1 1	-1 2 1 2 *** -5 -3 -1 0	1701 2252 1665 1271 h = 4 1673 3953 3206 1098	2020 2254 1821 1287 0 **** 1723 3972 3241 1122	113 130 92 *** 76 314 96 88
3 3 3 ****	5 6 2 3 4 4 ** -8 -2	3355 2231 1231 1368 1413 h = 3 1812 2265	1787 2935 2243 1244 1391 1437 32 **** 1826 2276	145 439 85 60 159 61 **** 123 154	0 - 0 - 1 - 1 - 1 2	766212 * 73	2801 1449 1847 2578 1130 1377 h = 3 2816 1745	2568 1357 1830 2506 1117 1397 6 **** 2459 1919	93 314 114 277 81 57 179 **** 440 258	0 1 2 2 ***** 0 1 1 1	-1 2 1 2 -5 -3 -1 0	1701 2252 1665 1271 h = 4 1673 3953 3206 1098	2020 2254 1821 1287 10 **** 1723 3972 3241 1122	113 130 92 *** 76 314 96 88
3 3 **** 0 0 0	5 6 2 3 4 *** -8 -2 -1	3355 2231 1231 1368 1413 h = 3 1812 2265 920	1787 2935 2243 1244 1391 1437 32 **** 1826 2276 900	145 439 85 60 159 61 **** 123 154 90	0 - 0 - 1 - 1 - 1 - 2 - 0 - 0 - 0 - 0 - 0 -	766212 * 732	2801 1449 1847 2578 1130 1377 h = 3 2816 1745 3354	2568 1357 1830 2506 1117 1397 6 **** 2459 1919 3355	93 314 114 277 81 57 179 440 258 195	0 1 2 2 ***** 0 1 1 1 1	-1 2 12 -5 -3 -1 0	$\begin{array}{r} 1701 \\ 2252 \\ 1665 \\ 1271 \\ h = 4 \\ 1673 \\ 3953 \\ 3206 \\ 1098 \\ h = 4 \end{array}$	2020 2254 1821 1287 0 **** 1723 3972 3241 1122 1122	113 130 92 **** 76 314 96 88
3 3 ***** 0 0 0	562 34 -8 -2 -10	3355 2231 1231 1368 1413 h = 3 1812 2265 920 2991	1787 2935 2243 1244 1391 1437 32 **** 1826 2276 900 3066	145 439 85 60 159 61 **** 123 154 90 94	0 - 0 - 1 - 1 - 1 - 2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	766212 * 7320	2801 1449 1847 2578 1130 1377 h = 3 2816 1745 3354 3928	2508 1357 1830 2506 1117 1397 2459 1919 3355 3907	93 314 114 277 81 57 179 440 258 195 115	0 1 2 2 ***** 0 1 1 1 1	-1 2 12 -5 -3 -1 0	$1701 \\ 2252 \\ 1665 \\ 1271 \\ h = 4 \\ 1673 \\ 3953 \\ 3206 \\ 1098 \\ h = 4$	2020 2254 1821 1287 10 **** 1723 3972 3241 1122	113 130 92 7*** 76 314 96 88
3 3 **** 0 0 0 0 0	562 34 -8 -2 -10 7	3355 2231 1231 1368 1413 h = 3 1812 2265 920 2991 2492	1787 2935 2243 1244 1391 1437 32 **** 1826 2276 900 3066 2246	145 439 85 60 159 61 *** 123 154 90 94 350	0 - 0 - 1 - 1 - 1 - 2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	766212 * 73201	2801 1449 1847 2578 1130 1377 h = 3 2816 1745 3354 3928 2273	2568 1357 1830 2506 1117 1397 2459 1919 3355 3907 2231	93 314 114 277 81 57 179 440 258 195 115 129	0 1 2 2 ***** 0 1 1 1 1 *****	-12 12 -5 -3 -10 ++ -4	$1701 \\ 2252 \\ 1665 \\ 1271 \\ h = 4 \\ 1673 \\ 3953 \\ 3206 \\ 1098 \\ h = 4 \\ 832$	2020 2254 1821 1287 10 **** 1723 3972 3241 1122 11 ****	113 130 92 **** 76 314 96 88 **** 71
3 3 **** 0 0 0 0 0 0	56234 -82-10 79	3355 2231 1231 1368 1413 h = 3 1812 2265 920 2991 2492 1905	1787 2935 2243 1244 1391 1437 1826 2276 900 3066 2246 1852	145 439 85 60 159 61 *** 123 154 90 94 350 105	0 - 0 - 1 - 1 - 2 ******* 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	766212 * 732010	2801 1449 1847 2578 1130 1377 h = 3 2816 1745 3354 2273 2211	2568 1357 1830 2506 1117 1397 2459 1919 3355 3907 2231 2281	93 314 114 277 87 179 179 4*** 440 258 195 115 129 99	0 1 2 2 ***** 0 1 1 1 1 *****	-1212 -5-3-10 -42	$ \begin{array}{r} 1701 \\ 2252 \\ 1665 \\ 1271 \\ h = 4 \\ 1673 \\ 3953 \\ 3206 \\ 1098 \\ h = 4 \\ 832 \\ 1307 \\ 1307 \end{array} $	2020 2254 1821 1287 10 **** 1723 3972 3241 1122 11 **** 808 1401	113 130 92 **** 76 314 96 88 **** 71 100
3 3 **** 0 0 0 0 0 0	56234 ** 82-10793 -3	3355 2231 1231 1368 1413 h = 3 1812 2265 920 2991 2492 1905 2608	1787 2935 2243 1244 1391 1437 1826 2276 900 3066 2246 1852 22686	145 439 85 60 159 61 123 154 90 94 350 105 210	0 - 1 - 1 - 1 - 2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	766212 * 7320103	2801 1449 1847 2578 1130 1377 h = 3 2816 1745 3354 3928 2273 2211 2877	2568 1357 1830 2506 1117 1397 2459 1919 3355 3907 2231 2281 2926	93 314 277 81 579 179 4*** 440 258 195 129 999 157	0 1 2 2 ***** 0 1 1 1 1 1 *****	-1212 ++-53-0 ++423	$ \begin{array}{r} 1701 \\ 2252 \\ 1665 \\ 1271 \\ h = 4 \\ 1673 \\ 3953 \\ 3206 \\ 1098 \\ h = 4 \\ 832 \\ 1307 \\ 1208 \end{array} $	2020 2254 1821 1287 10 **** 1723 3972 3241 1122 11 **** 808 1401 1291	113 130 92 **** 76 314 96 88 **** 71 100 162

.

•

. 162

•

k	1	Fo	Fc	sigr	k	1	Fo	Fc	sigr	k	1	Fo	Fc	SigF
****	***	h = 4	2 ***	****										
0	-4	985	1044	112										
0	-3	2085	2047	85										
Ō	Ō	2748	2759	102										
ň	- ī	1420	1202	- 60										
ĭ		3746	1002	100										
	v	2/40	2000	100										
1.	1	1353	1365	136										
****	***	h = 4	3 ***	****										
•	_													
0	-2	1447	1568	65										
0	-1	1406	1543	67										
****	***	h = 4	4 ***	****										
•	•		1956	100										
U	U	1013	1720	TUU										

APPENDIX B OBSERVED AND CALCULATED STRUCTURE FACTOR

·

AMPLITUDES (x10) FOR $Mb_{12-x}Ta_xS_4$ (x = 5.26)

k	1	Fo	Fc	sigF	' k	1	Fo	Fc	sigF	k	1	Fo	Fc	SigF
• • • •		h =	0		3	-9	7006	7139	0	2	-33	2366	2144	0
					3	-5	1144	1301	0	2	-32	1664	1328	0
0	12	1793	1836	79	3	23	2653	2593	96	2	-28	1134	438	0
0	14	5657	5542	98	3	35	1437	1567	0	2	-21	2103	1973	0
0	18	3024	2990	80	4	-12	903	900	0	2	-20	3890	4052	0
0	20	3384	3433	85	- 4	0	10723	11568	0	2	-15	3984	3913	Ó
0	24	840	757	Ô	- 4	14	2530	2618	0	2	-11	1270	1180	Ó
0	26	2073	2050	75	- 4	16	976	321	0	2	1	2111	1892	Ō
0	28	2744	2907	θ.	- 4	18	1762	1590	96	2	10	687	377	0
0	32	2570	2524	0	4	20	1808	1887	0	2	13	1141	1066	87
0	34	2869	2834	91						2	17	1171	1057	0
0	36	2125	2143	0	~ ~ ~ ~		h =	1	• • • •	2	18	3592	3745	Ó
0	40	1492	1400	0						2	19	4773	4719	Ó
0	42	4096	4201	0	0	-44	1217	860	0	2	23	1601	1545	77
0	44	2007	1901	96	0	-41	2457	2214	91	2	25	1382	1345	91
0	46	1541	1401	0	0	-38	1927	1788	0	2	30	5456	5128	Ō
1	-33	2504	2515	96	0	-30	6147	5926	0	2	38	1980	1587	95
1	-29	920	876	0	0	-9	1005	1042	68	2	39	1515	1401	Ō
1	-25	3369	3253	98	0	1	2270	2328	0	2	41	2169	1983	Ó
1	-21	6627	6391	0	0	4	1618	1590	0	3	-22	2523	2480	88
1	-9	11735	10843	0	0	15	5022	5012	0	3	-21	2608	2452	92
1	5	2066	2050	78	0	33	2597	2466	0	3	-20	2008	2022	79
1	7	1639	1661	56	0	37	1778	1511	0	3	-11	2534	2661	Ō
1	11	3988	3884	81	1	-42	1739	1122	0	3	4	1257	1256	Ó
1	13	788	749	94	1	-40	2562	1466	0	3	- 3	837	219	Ó
1	17	895	633	0	1	-39	3006	2720	0	3	8	1189	1205	0
1	23	3814	3668	0	1	-36	2067	2197	84	3	9	4159	4091	Ó
1	27	1385	1311	0	1	-35	1386	515	0	3	10	6252	6160	0
1	31	1454	1271	0	1	-31	2013	1478	0	3	13	997	1041	0
1	35	2066	2081	79	1	-28	2809	2426	0	3	17	835	592	0
1	39	3038	2901	0	1	-22	3300	3399	0	3	25	1874	1802	0
1	41	3883	3742	0	1	-18	1142	960	0	3	28	1911	1853	0
2	-40	1230	1256	0	1	-16	870	861	95	3	29	2672	2472	0
2	-32	2179	2177	92	1	-9	6508	6271	0	4	-20	2935	2700	0
2	-28	2421	2525	79	1	-6	1307	1291	57	4	-15	2708	2511	93
2	-18	2455	2439	79	1	1	1011	1111	77	- 4	-1	1014	1196	0
2	-2	1205	1082	0	1	4	1982	1997	0	4	18	2704	2518	0
2	0	17685	18979	0	1	8	1616	1683	56	4	19	3125	3200	0
2	12	1283	1448	0	1	10	10044	9375	0	- 4	21	1305	1343	0
2	14	4180	4205	95	1	11	3979	4010	0					
2	20	2797	2821	0	1	12	1029	1122	0	* * * *		h =	2	
2	26	1704	1783	0	1	13	1494	1473	58					
2	34	2657	2513	97	1	25	2312	2362	0	0	-30	4925	5041	0
2	36	2040	1902	86	1	29	3583	3238	0	0	-26	3145	3101	0
3	-33	1941	1925	95	1	32	1715	1567	0	0	-23	2174	2000	0
3	-31	1113	1017	0	1	38	1911	654	94	0	-20	4548	4289	0
3	-29	884	741	0	1	41	2624	2555	94	0	-12	9839	9231	0
3	-25	2352	2455	88	1	45	1418	923	0	0	-11	6726	6470	0
3	-21	4641	4544	0	2	-35	1385	1242	0	0	-10	3313	3427	0
3	-11	2660	2642	0	2	-34	1598	1312	0	0	0	928	856	68

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
0	9	828	772	0	3	21	4337	4280	0	1	10	824	771	0
0	13	2814	2926	0	3	27	1905	1798	0	1	12	1822	1792	0
0	15	3316	4062	0	3	28	3179	3101	99	1	13	1654	1581	64
0	44	1157	1249	0	3	29	3292	3225	0	1	20	2183	2128	0
1	-45	2300	2183	89	3	30	1653	1513	0	1	22	2238	2211	0
÷	-42	1073	3/1	Ŭ,	5	31	2351	2226	90	1	32	2027	190Z	0
÷	-40	1020	2/91	v v	9	-10	1359	1299	U Q	1	34	1954	2138	0
÷	-35	1033	1/23	Ň	4	-14	919	217	U O	2	-37	2/11	2625	90
1	-18	0090	2000	Ň	Å	-11	1020	1600	06	4	-28	3617	482	0
i.	-17	1/03	1200	Ň		12	1047	4570	30	2	-27	2220	24/4	32
î	-13	2024	2140	ň	4	13	1632	1/03	ň	2	-17	1225	1357	0 0
ī	-13	1609	1653	9Å		15	2052	2145	ň	2	-1 2	1415	12/0	70
ī	-6	3892	3789	ñ	-	10	1908	1907	ň	2	_10	3521	2514	'
ī	-5	4827	4802	ŏ	4	20	2256	2303	9 1	5	-10	2430	2274	ň
ī	-3	3376	3279	ŏ	4	23	1233	1208	ō	2	-6	1243	1244	ň
ī	-2	2082	2137	ŏ	•				•	2	Ă	2194	2209	ň
ī	ō	2671	2709	81	~ ~ ~ ~		h =	3	• • • •	2	5	2083	2031	71
1	8	1390	1330	58				-		2	7	5062	5054	ō
1	9	4041	3981	0	0	-43	2584	2440	0	2	8	3726	3746	õ
1	16	1688	1656	0	0	-40	2680	2957	0	2	11	3074	3160	Ō
1	37	1854	1847	0	0	-37	3114	2976	0	2	12	2100	2147	Ó
2	-38	2684	2326	0	0	-16	924	638	90	2	14	1508	1373	0
2	-15	3370	3250	0	0	-14	1714	1687	88	2	18	1670	1631	0
2	-13	2237	2305	80	0	-13	1529	1579	0	2	20	1146	1188	0
2	-12	7377	7165	0	0	4	2835	2886	0	2	21	1810	1873	0
2	-11	5227	5082	0	0	5	2611	2667	0	2	22	1294	1285	0
4	10	2020	2081	0	Ŭ,	ē	1419	1548	0	2	23	902	895	0
4	14	1004	1020	0	U N		0500	6495	0	2	40	2529	2646	0
2	10	2670	7970	0	0	8	45/0	9/52	0	5	-25	1/52	1512	94
2	20	20/9	2034	0	0	10	2901	2900	0	3	-12	11//	1215	0
2	20	10/1	1708	ň	Ň	11	2036	2001	Ň	2	-10	000	409	Ň
5	26	2427	2623	ň	ň	12	2020	2522	ň	2		3300	2251	Ň
2	27	1299	1235	ň	ň	10	3288	2000	ň	2	-3	3885	1152	ň
2	30	4268	4349	ŏ	ŏ	21	2651	2281	ŏ	จั	2	7283	7138	ŏ
2	37	2378	2175	ŏ	ŏ	25	1148	1159	ŏ	3	16	1522	1509	96
2	39	2743	2577	ō	ō	27	2922	2857	ŏ	3	17	2923	2896	õ
3	-32	2347	2184	ŏ	ŏ	31	1533	1408	ŏ	3	18	1516	1377	97
3	-22	2045	. 1871	81	1	-42	1796	1933	ŏ	3	20	1634	1483	Ó
3	-20	2788	2771	0	1	-40	2550	2581	Ō	3	22	1620	1645	ŏ
3	-6	2666	2556	0	1	-28	1722	1752	80	3	26	1273	1373	ŏ
3	-5	3302	2996	0	1	-17	3489	4092	0	3	28	1241	1362	0
3	-3	2262	2065	0	1	-9	721	249	0	3	31	1194	1142	0
3	0	1746	1759	0	1	- 3	5018	4928	0	3	32	1820	1504	0
3	2	1730	1536	0	1	-2	11407	10916	0	3	34	1617	1695	0
3	9	2538	2533	99	1	1	6226	6169	0	- 4	-19	2144	2160	94
3	13	1461	1503	98	1	5	1057	1115	0	4	-13	1121	763	0
3	14	1008	283	0	1	6	1508	1488	66	4	-12	1383	1505	0
3	17	1124	938	0	1	7	1361	1408	69	4	- 5	1298	1178	0

k	1	Fo	Fc	sig	r k	1	Fo	FC	sigF	k	1	Fo	Fc	SigF
4	-4	1353	1362	0	2	21	2933	2967	0	1	2	1240	1272	81
- 4	1	3427	3209	0	2	22	2152	2314	0	1	10	1471	1728	0
4	8	2454	2447	91	2	24	3395	3210	0	1	11	1271	1278	85
4		1022	. 1481	0	2	26	3582	3766	0	1	15	1589	1445	75
4	10	2294	2307	92	4	35	1902	2028	U O	1	16	1074	1170	0
4	11	2248	2039	0	2	38	31/9	3230	0	Ţ	22	114/	1063	0
4	20	1101	1220	Ŭ	5	-28	23/3	2299	8/	1	24	1444	1367	90
4	21	1344	1220	U	3	-25	1911	1905	0	1	29	18/4	2027	0
		h			2	-22	12//	1105	0	2	~ 34	3000	2916	0
			4		2	-1/	1117	1020	Ň	2	-20	2122	2070	0
٥	_35	2230	2203	0	2	16	1862	2004	ň	2	-10	3704	330	0
ŏ	-24	4218	3781	ň	2	18	1966	1843	ň	5	-7	1077	10/0	õ
ŏ	-12	1891	1971	ň	3	19	1704	1744	ň	5		3423	3509	ň
ŏ	29	3307	3293	ŏ	ž	29	1504	1 4 9 1	ň	5		1280	1455	Ň
ŏ	-8	7904	7727	ŏ		32	2186	2330	ň	5	1	801	467	ň
ŏ	-4	3897	3995	ŏ	ă	-7	3653	3757	ŏ	2	Â	3135	3291	95
ŏ	-1	1426	1523	ŏ	Ā	-4	1991	2043	ŏ	2	6	1489	1438	88
ŏ	ō	2816	2700	ŏ	4	ō	1090	1203	ŏ	2	11	1513	1378	õ
Õ	3	1735	1571	ŏ	4	ě.	4205	4022	ŏ	2	12	918	820	ŏ
Ō	6	1764	1857	ŏ	4	9	1769	1763	ŏ	2	15	1207	1134	ŏ
Ő	7	7585	7499	Ō	4	12	1359	1135	ŏ	2	22	2436	2440	ō
0	18	1343	1448	78					-	2	23	3454	3126	ō
0	26	4469	4354	0			h =	5	• • • •	2	24	2137	2213	Ō
0	28	2737	2443	0						2	27	3798	3758	0
0	33	1171	959	0	0	-42	1896	1999	0	2	36	1400	1339	0
0	38	3692	3628	0	0	-36	1543	1522	0	3	-22	1172	815	0
1	-43	2194	2181	0	0	-27	4971	4318	0	3	-19	1314	1481	0
1	-37	1354	1715	0	0	-18	1098	1154	0	3	-18	1591	1505	0
1	-12	912	813	0	0	-10	1048	1172	0	3	10	1266	1143	0
1	-5	1101	1169	83	0	-6	1817	1807	64	3	13	5798	5804	0
1	-4	662	616	0	0	2	1719	1814	63	3	14	1763	1627	0
1	-2	1158	1226	79	0	3	4288	4400	0	3	15	1004	1133	0
1	-1	1381	1435	71	0	4	4009	4018	95	3	27	1601	1534	0
1	.0	1578	1640	65	0	5	693	612	0	4	-8	2548	2465	89
1	1/	9221	9365	0 0	0	7	2175	2264	0	4	3	2141	2283	0
1	22	1280	1504	0	0		45/4	4618	U O	4	4	1992	2231	0
	25	2035	2534	0	0	11	1031	1/48				L	· · · · ·	
4	-29	1204	730	0	0	12	10/6	998	91			n =	0	
2	-20	219/	2220	Ň	0	12	1239	13/5	~ 1	•		2162		•
4	-23	22/4	2338		Ŭ,	10	1148	1215	AT	0	-33	3102	3101	0
4	-12	1220	102/	80	0	24	24/0	2513	ů.	v v	-29	1112	000	0
2	- /	1274	1240	Ň		34	3430	3209	Ň		-20	2220	3304	04
2	-0	1040	1340	Ň	- 1	-32	2000	2030	Ň		-20	2339	2209	04
2	1	1025	1150	Ň	1	-21	1205	1/2/	ň	Ň	-15	2003	2000	Ň
2	Ă	21.67	2110	Ň	1	-14	2325	23264	63	0	-13	1010	4770	Ň
2	4	274/	5153	ň	1	-12	2320	7094	03	0	-13	2020	2245	ň
2	0	2760	2651	ň	1	_10	2701	3707	ň	ň		2722	2243	ň
5	1 9	1004	1172	ň	1	-12	2101	5172	ň	0	- 7	5612	5632	ň
	τq	T024		0	-	- 7	/42	221	0	U	- 3	2017	2022	

.

.

.

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	` k	1	Fo	Fc	sig
0	0	2887	2865	_0	3	3	2028	2111	89	2	15	5406	5540	0
U	4	2394	2415	11	2		1915	2022	0	2	31	1158	286	0
0	4	5/04	5690	Ŭ,	3	13	2574	2983	0	3	-24	3988	3924	0
0	5	3369	3430		3	14	2229	2591	0	3	-23	2441	2511	0
0		1369	1407	81	3	17	2136	2128	87	3	-19	1205	1388	0
0	12	3222	3246	0	3	25	991	438	0	3	-13	1641	1680	0
0	18	2671	2562	0	3	29	2006	2014	0	3	-8	1573	1592	0
0	23	5125	5266	0	4	-12	1670	1796	0	3	-7	2185	2281	0
U V	30	1383	1203	0	4	-9	1594	1541	0	3	-5	2385	2471	0
	38	2/33	2839	0	4	-4	2/85	3182	0	3	-1	1690	1435	0
4	-29	4500	2304	~~	4	ų v	1031	1200	0	5	5	18/4	1860	93
1	-1/	2/55	2/91	97	4	3	20/0	3085	U	3		1824	2061	0
Ť	-10	1033	1000	/6						3	10	1450	1417	0
+	-8	2866	2740	0			h =	7		3	26	3096	2928	0
Ť	-/	43//	442/	<u> </u>	•				•	4	1	1339	751	0
1	- 4	1345	1384	85	v v	-29	11/4		Ů,	4	3	1166	767	0
+	-1	7/8	830		0	-25	1108	1243	<u> </u>					
+	v v	2590	2010	80	0	-1/	3094	3182	97			n =	8	
1		40/2	4131	91	v v	-10	2822	2905		•				•
4	3	3133	3051	ЯÖ	Ň	-12	1289	1132	99	0	-30	2/1/	2/31	0
1	2	3071	4000	0	Ň	-10	1/80	1/35	v v	U N	-31	1811	1468	0
-	12	30/1	3330	0	Ň	-0	1507	1200		U N	-45	1240	1013	Ŭ,
1	14	3554	2412	Ň	Ň	3	1125	1070	03	U N	-13	1021	1424	0
1	74	339/	1056	0	Ň	- 4	1135	1070	Ň	v v		3090	3031	
1	24	1/92	1020	Ň	0	14	1490	1455	Ň	, v		2320	2339	80
1	32	1075	1001	Ň	Ň	10	2641	3703	0	Ň	- 3	1552	1503	09
1	32	1373	618	ň	ň	10	2110	1004	Ň	Ň	-1	2407	2510	30
1	39	1967	1849	ň	ň	32	3602	3304	ň	ň	Ē	1027	1096	Ň
5	-11	1009	1009	ň	ĭ	-13	2214	2256	A 1	ň	12	2106	2227	ň
5	-10	2300	2279	ŏ	1	-10	1724	1853	83	ň	14	3057	3060	ň
2	-4	4817	4702	ň	ī	-10	2013	2017	03	ň	15	3337	3102	ň
2	-0	2257	2315	ครั	ī		2260	2434	ň	ň	16	3537	3652	ň
2	ĭ	792	597	ŏõ	ī	1	1929	1950	76	ň	28	1856	1687	ň
2	2	1876	2007	8ŏ	ī	5	3235	3255	Ő	ň	30	1688	1236	ŏ
2	3	4672	4620	ŏ	ī	6	2556	2760	ŏ	ŏ	34	5097	4859	ŏ
2	5	2810	2847	ŏ	ī	7	2974	3039	ŏ	ī	-25	5766	5567	ň
2	8	1246	1180	ŏ	ī	ġ	2065	2131	ŏ	1	-23	1811	2030	ň
2	12	2749	2704	ō	ī	17	1031	1116	ŏ	1	-11	1091	824	ŏ
2	15	2466	2555	AĂ	ī	19	1759	1816	85	ī	-10	2568	2606	92
2	23	4529	4569	Õ	ī	24	4807	4987	Ō	ī	_9	2313	2385	0
2	26	2025	2002	88	ī	26	4092	3722	õ	ī	-6	3415	3451	ŏ
2	33	2662	2817	ō	ī	28	1420	1441	ŏ	ī	-5	3294	3362	ŏ
3	-23	1166	888	Õ	ī	35	1818	1219	ŏ	ī	ĩ	1492	1386	93
3	-10	1398	1136	ō	2	- 3	1148	1152	ō	ī	3	2144	2221	ō
3	-7	3030	3205	ŏ	2	ī	1175	1127	Ō	ī	4	2848	2984	9 1
3	-6	2704	2941	90	2	4	908	938	Ō	ī	8	2256	2178	ō
3	-5	2732	2943	0	2	6	923	1063	0	ī	14	1767	1760	Ō
3	0	1814	1857	94	2	10	1484	1453	0	1	16	1168	1142	0
3	2	2987	2913	97	2	12	1100	972	0	1	28	2049	2003	0

.

.

k	1	Fo	FC	sigF	' k	1	Fo	Fc	sig	F k	1	Fo	Fc	sigF
1	30	2064	1760	0	2	-6	1803	1806	0	0	-24	2093	2133	0
1	32	2370	2108	0	2	-5	3786	4004	0	0	-14	1335	1135	Ó
1	34	1752	1853	0	2	-2	1435	1312	0	0	-11	2242	2230	89
2	-31	1475	1294	0	·2	-1	1463	1414	0	0	-8	2588	2663	93
2	-30	1504	1109	· 0	2	3	1431	1469	0	0	-6	3452	3456	0
2	-27	1341	661	0	2	- 4	4806	4891	0	0	3	1631	1369	0
2	-16	2572	3181	0	2	10	1085	1093	0	0	7	3119	3112	0
2	-11	2472	2592	91	2	16	2714	2836	93	0	10	1891	1904	0
2	-7	2071	2007	82	3	-14	2129	2321	0	0	22	2282	2637	0
2	0	2866	3024	0	3	-9	1733	1941	Q	1	-10	1938	2041	98
2	1	952	1343	0	3	4	1512	1728	0	1	-2	2157	2031	0
2	3	1041	1325	0	3	5	3046	3133	0	1	-1	1332	1465	0
2	5	1743	1665	0	3	6	1945	2155	0	1	12	1183	1241	0
2	12	1964	2060	0	3	11	1598	1626	0	2	-10	1616	1683	0
2	14	3108	3470	0						2	-8	2162	2344	0
3	-9	1465	1839	0			h = 1	.0		2	-7	2370	2771	0
3	-5	2549	2609	92	_	•				2	3	988	1216	0
3	-5	2557	2583	0	0	0	3278	3216	0	2	6	2917	3062	0
3	3	1566	1714	0	0	2	1296	1142	0					
2	4	2248	2258	92	0	4	2911	2834	96			h = 1	.2	
3	10	15//	1649	0	U U	. 5	1256	1139	0	•				
3	10	1/10	1986	U O	0	13	1435	1414	0	0	-1	2102	1918	93
3	20	1333	1301	0	.0	15	2338	2347	0	0	3	1710	1657	0 .
		L			0	17	1762	1705	99	0	5	1956	1950	0
		ש מ	9		U O	19	2972	3140	0	D	8	3403	3161	0
•		1026	1716	•	Ň	25	4855	4944	Ŭ	U U	13	3068	3047	0
Ň	-33	1330	1/10	0	Ų.	31	1953	1788	0	1	-6	1480	1550	0
Ň	-30	3049	2930	Ň	÷.	-21	2311	2403	Ŭ	1	-4	3421	3447	0
Ň	-20	1101	1110	Ň	1	-14	2381	2851	0	1	- 3	2093	2901	Ŭ
Ň	-10	1001	1245	Ň	1 1	-0	100/	1041	0	Ţ.	-2	258/	2549	0
Ň	-10	2000	2045	Ň	- 1	-2	1230	1345	0	1 1	-1	2314	2352	93
Ň	- 7	4730	2043	Ň	1	4	1389	1205	ů.	1		1/22	1010	Ŭ
2	- 3	4/39	4020	02		2	1290	1305	~~	1	ΤŬ	1043	10/1	0
Ň	-1	1601	1454	92	1	0	2420	1667	92		- 3	1550	1403	ů.
ŏ	-1	1745	1600	31	1	12	2014	200/	Ň	2	-1	1700	1720	0
ň	Å	5420	2000	Ň	1	14	3014	2222	Ň	2	2	1/00	1/29	N 0
ň	2	2010	2032	01	1	20	3433	3/12	Ň	2	0	2040	2032	99
ň	15	076	1145	<u> </u>	5	-27	1746	2040	Ň			h - 1		
Ň	24	1157	700	Ň	5	10	2720	2040	8				. 3	
ĩ	_21	1750	1772	Ň	2	-17	1349	1 4 9 6	Ň	•	1 2	2260	2460	•
1	- 17	2106	2206	Ň	2	-16	2051	2044	Ň	Ň	-12	1075	3400	Ň
1	-14	2054	2300	Ň	2		2031	2000	Ň	Ň	-0	1450	1610	Ň
1	_11	1005	2770	84	2	1 6	1060	24/0	ň	Ň	-4	1303	1340	Ň
1		7320	2003	82	2	- 4	1901	20/4	ň	1	_2	1754	1050	Ň
1	5	4014	4065	<u>02</u>	2	-0	1001	1005	ň	1	- 3	1667	1767	Ň
1	ž	2822	2770	97	3	6	T000	T ((3	0	-		7003	1/0/	v
1	ŏ	2281	2429	85			h - 1	1						
1	25	3312	1276	55			1	•						
2	29	1813	1756	0 ž	0	-26	2227	2413	0					

APPENDIX C OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (x10) FOR $Nb_xTa_{5-x}S_2$ (x \approx 1.72)

k	1	Fo	Fc	sigF	k	1	Fo	FC	sigF	k	1	Fo	Fc	sigE
• • • •		h =	0		-3	-14	1937	1907	36	3	-17	364	310	49
	-				-3	-12	1978	1934	57	3	7	2456	2459	40
Q	2	1654	1610	26	-3	0	3117	3189	49	3	15	785	767	35
0	4	705	713	19	-3	4	340	374	40	- 4	0	2128	2115	38
0	6	999	789	55	-3	6	359	369	34					
0	8	1064	1047	28	-3	22	860	778	36	* * *	~ ~ ~ ~	h =	3 ^ ^ ^ `	• • • •
0	12	3190	3247	64	-2	~9	472	486	56					
0	14	3043	3112	51	-2	-5	1965	1951	32	-3	-12	1438	1425	34
0	22	1180	1133	34	-2	7	3668	3600	56	-3	0	2228	2285	39
0	24	834	882	30	-2	15	1067	1054	26	-3	2	610	624	28
0	26	2327	2360	42	-2	17	463	446	34	- 3	- 4	354	284	58
0	28	560	580	44	-1	-12	2880	2860	0	-2	15	718	768	31
1	-29	624	623	24	-1	-8	792	872	33	-1	-14	1908	1905	37
1	-23	310	211	52	-1	-4	526	581	44	-1	-6	342	369	41
1	-21	1374	1436	29	-1	0	5424	5182	0	-1	0	3219	3186	51
1	-13	644	640	28	-1	2	1318	1379	74	-1	12	1950	1931	37
1	-7	4576	4723	0	-1	24	843	811	30	0	-21	1053	1039	62
1	-5	2316	2534	97	-1	28	593	539	34	0	-15	881	892	37
1	3	479	460	23	1	-22	1033	1044	39	0	-5	1505	1575	34
1	9	552	611	28	1	-14	2740	2764	92	0	~ 3	343	298	52
1	11	381	395	56	1	6	577	614	19	0	7	2810	2928	62
1	15	1295	1281	31	1	26	2223	2185	0	0	9	381	393	42
1	17	549	546	30	2	-21	1210	1212	37	0	19	2070	2040	68
1	19	2870	2854	67	2	-13	481	505	34	1	-8	503	573	71
2	-26	1999	2026	57	2	-3	423	363	50	1	-2	867	876	54
2	-24	744	749	23	2	19	2463	2391	59	1	22	730	778	99
2	-22	936	966	22	3	-2	885	877	29	2	-5	1275	1315	32
2	-14	2462	2489	39	3	8	580	574	68					
2	-12	2629	2554	57	4	7	2008	2102	47	* * * *	• • • •	h =	4	~ ~ ~ ~
2	-8	739	765	23										
2	-4	504	505	22	* * * *	• • • •	h =	2 ~~~~	• • • •	-2	-2	609	578	51
2	0	4864	4443	74						-2	0	2143	2117	41
2	2	1253	1218	25	-4	-2	568	578	39	-2	8	378	393	61
2	6	380	520	45	-3	-5	1320	1319	31	-1	-5	1158	1124	54
3	-21	1120	1039	44	-3	13	393	355	54	0	-14	1468	1511	94
3	-19	2157	2040	61	-3	19	1833	1762	34	0	-12	1542	1528	53
3	-15	879	893	29	-2	-24	606	644	96	0	0	2691	2464	52
3	-9	408	393	42	-2	-12	2102	2107	59	0	2	727	673	39
3	-7	2901	2931	67	-2	0	3779	3517	86	1	-7	2122	2098	45
3	-5	1502	1576	33	-2	2	1099	971	0					
3	13	442	420	72	-2	8	609	626	37					
4	-14	1491	1512	36	-2	22	844	835	30					
- 4	-12	1484	1529	59	-1	-15	1056	1054	48			•		
- 4	-8	383	454	53	0	-8	728	765	62					
- 4	0	2387	2467	41	0	-6	485	519	44					
4	2	652	674	41	0	-4	461	504	61					
					0	-2	1166	1217	45					
		h =	1	* * * *	0	0	4352	4439	76					
					0	12	2539	2554	42					
4	-5	1053	1125	35	2	-14	2062	2068	38					

.

APPENDIX D OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (x10) FOR $Mb_xTa_{2-x}S$ (x = 0.95)
k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
		h =	0	****	• • • •	• • • •	h =	2	****	1	õ	1377	1340	31
0	12	206	201	14		E	6 2 1	631	20	3	-5	663	651	28
ĭ	-0	636	201	E 2		-3	511 512	400	30	3	ų	320	1021	45
1	-5	123	118	32 8			1003	1001	13	3	-	323	350	22
1	-4	378	373	22	_3	-3	1032	1091	17			h -		
5	-11	907	860	60		-11	970	789	É Á				4	
2		355	414	35	-2	-11	970	075	66	-2	_1	220	224	1 2
2	-6	971	1059	75		-3	200	203	29	_1		210	224	12
2	· 1	552	557	24	-2	-0	1466	1 4 4 4	48	_1	-0	518	524	16
3	3	1081	1241	Ō	-2	ĭ	481	469	27	ō	-5	656	683	65
Ă	-6	687	744	68	-2	5	883	856	56	ŏ	-1	365	367	Ă
•	-	•••			-2	10	348	376	39	ŏ	ō	1129	1110	19
		h =	1	~ ~ ~ ~	-1	-12	251	229	16	ŏ	2	111	88	13
					-1	-10	184	172	17	ŏ	3	210	225	19
-4	-3	947	975	36	-1	-6	447	469	33	ŏ	7	157	158	17
-3	-5	783	804	46	-1	3	1461	1456	65	2	0	935	997	48
-3	-1	449	437	10	-1	4	312	. 317	20	2	3	204	201	6
- 3	7	178	180	22	-1	8	969	969	66	2	6	644	676	25
-3	9	335	348	26	-1	11	212	211	19					
-2	5	89	91	15	0	-12	334	335	15					
-1	-11	969	915	0	0	-10	328	416	41					
-1	-6	1143	1149	91	0	-7	193	211	14					
-1	-5	1120	1087	93	0	-4	129	149	13					
-1	-3	388	398	24	0	-3	307	351	26					
-1	0	2066	2005	31	0	-2	133	154	11					
-1	2	181	184	12	0	0	1808	1750	41					
-1	12	298	349	32	0	5	919	993	71					
U U	-0	538	557	38	1	7	275	309	25					
v v	- 5	1/30	1835	10	- 1	9	550	606	40					
0		070	00	TO TO	2	-9	300	300	21					
Ň	4	200	354	24			h -							
ň	é	1114	1104	20				2						
ŏ	10	100	100	21	_ 3	-7	172	152	15					
ň	īĭ	230	232	19	_3	-6	754	708	78					
ŏ	12	247	255	32	_3	- 3	212	213	31					
ŏ	13	443	475	25	-2	-8	773	783	58					
i	-9	427	441	64	-2	-7	237	247	16					
ī	-7	231	224	23	-2	-2	587	586	19					
ī	i	611	614	30	-2	4	247	248	17					
ī	10	394	439	54	-1	-10	399	358	12					
ī	13	202	193	26	ō	-11	206	194	19					
Ž	-2	808	787	31	Ő	-9	496	547	42					
3	-6	813	872	49	Ó	-8	848	866	69					
3	-3	264	272	12	Ó	-7	259	275	31					•
3	-2	112	110	13	Ó	2	613	667	45					
4	4	221	226	12	0	4	215	277	31					
4	7	225	224	10	0	6	380	409	27					
					5		1 7 4	175	0					

APPENDIX E OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (x10) FOR $Mb_{21-x}Ta_xs_8$ (x \approx 6.2)

k	1	Fo	Fc	sigl	r k	1	Fo	Fc	sig	r k	1	Fo	Fc	sigF
****	***	h =	0 ***	****	-13	-1	3517	. 3585	92	15	2	3939	3981	102
•	•	14053	15777	226	-12	-2	2088	2089	58	17	D	1046	997	72
2	2	14933	12331	3/0	-12	- 2	2322	240/	131	1/	2	931	874	37
11	1	0602	0202	243	-10	-2	32/0	3003	124			b -	4 444	
11	1	6935	6796	175	-10	_1	682	701	202			n =		
12	õ	3782	3703	123	-6	-2	1271	1226	56	_18	0	1852	2001	54
13	ĭ	1137	1173	36	-6	- 0	1400	1524	87	-16	Ž	4652	4640	120
14	2	711	735	30.	5	-3	7586	7590	192	-16	-0	5130	5252	163
16	ō	3106	3071	92	-4	ō	387	176	37	-14	ŏ	757	830	200
19	i	3578	3470	148	-3	-1	1864	1894	48	-10	-2	2644	2565	167
	-				-Ž	-2	548	512	25	-7	-3	880	822	34
****	***	h =	1 ***	****	-2	ō	629	685	66	-6	ō	478	483	22
					ō	Ó	999	1001	42	-Š	-3	2667	2675	72
-16	-1	806	794	31	6	Ó	7928	7541	433	-4	-Ž	915	912	44
-15	0	1473	1486	76	7	1	2771	2793	102	-4	Ō	1134	1186	76
-12	-3	3870	3896	101	7	3	1829	1907	60	-2	Ó	450	376	19
-12	-1	5028	5111	166	8	2	3657	3602	94	0	0	292	143	18
-10	-3	1267	1250	45	11	1	538	489	34	1	1	27,28	2747	70
-10	-1	1554	1643	67	11	3	463	381	38	3	3	6410	6464	163
-9	0	1066	1106	66	14	0	4878	4769	492	5	3	1408	1399	46
-8	-3	695	659	65	14	2	4170	4121	107	7	3	790	795	32
-7	-2	1019	984	37	16	2	· 610	609	33	8	0	4320	4112	170
-7	0	1257	1314	61	17	1	1887	1731	145	8	· 2	3159	3255	128
-4	-3	1921	1882	56	18	0	1105	1153	93	9	1	2301	2242	60
-3	-2	1127	1134	37				_		10	2	1182	1168	42
-3	0	1322	1432	94	***1	****	h =	3 ****	****	11	1	716	738	29
-2	-3	1179	1178	107		-			• •	11	3	546	532	40
-2	-1	1791	1863	47	-17	-2	1999	1999	59	15	1	1003	976	42
-1	Ų.	1994	1901	87	-15	-2	4482	4407	115	16	2	1588	1596	51
ų.	Ť	505	529	18	-11	-2	401	433	34	17	1	606	576	38
<u></u>	4	100/	1007	48	-11	Š,	230	549	24			L.'		
4	1	934	1027	30	-9	-2	1032	1/55	21	***	****	n =	5 ***	
3	Š,	009	322	02	-0	- 3	201	544	32	10			~~ ~ ~	~ 1
3	- 4	943	344	33	-5	-1	0/0	009	32	-15		2109	2242	01
4		1010	1027	12	~ 7	, v	10057	240	22	-12	-2	3009	35/4	94
Å,	2	1372	1034	33	-4	-1	10021	2000	434	-14	-1	3440	3429	70
2	2	730	0/07	225	-4	- 3	2204	264/		-12	-1	1000	2040	70
4	2	6530	6434	333	-2	-1	1124	1054	100	-11	-2	1416	1420	12
6	2	110/	1160	107	Ň		776	710	100	-11	_ 2	7007	1430	42
10	2	212	500	41	2	2	1200	1220	30		-1	620	620	447
15	2	2727	2787	105	2 A	1	1254	12/0	24	-5	-1	4610	4500	212
16	1	571	580	105	7	2	7/1	704	21	-3	_1	2012	2076	76
10	-	572	505	U J	7	0	0300	8793	727			2605	2674	60
****	***	h =	2 ***	****	'	2	6730	6033	170	-3	-2	2482	25/2	301
					6	5	2004	1977	56	-3	2	5402	5243	71
-19	-1	124R	1237	46	12	ិ	2304	2290	255	_1	0	530	553	21
-17	_1	3178	3247	83	11	ž	1939	1978	56	Ō	_ ž	3690	3572	132
-14	-2	743	725	20	15	តី	4591	4531	533	ň	- 1	5481	5516	148

k	1	Fo	FC	sig	r k	1	Fo	Fc	sig	r k	1	Fo	Fc	sigF
1	0	442	322	25	0	-3	1151	1162	52	18	0	3887	3882	497
2	1	12363	11353	669	0	-1	1617	1642	42					
4	1	3863	3827	112	3	0	4942	5021	125	****	***	h =	9 ***	****
5	2	3501	3566	90	3	2	3910	3860	100					
6	1	2191	2109	83	4	1	1217	1188	79	-14	-1	4382	4360	112
6	3	1446	1457	48	5	0	3839	3916	124	-13	-2	1027	948	52
7	0	1272	1233	117	5	2	3204	3161	106	-13	0	1103	1084	75
7	2	957	1000	35	7	2	515	557	63	-12	-1	3365	3208	146
8	1	1448	1420	54	8	1	2587	2550	86	-9	-2	316	177	45
11	0	5393	5066	276	12	1	3048	3049	185	-8	-1	1295	1276	53
11	2	4344	4275	111	14	1	1689	1690	51	-6	-3	4902	5164	174
13	2	3762	3702	98	15	2	439	322	57	-6	-1	7430	6972	213
					17	0	1137	1056	70	-5	-2	1014	1051	66
****	***	h =	6 ***	***						-5	Q	1309	1302	61
					***	***	h =	8 ***	****	-4	-3	1633	1646	74
-11	-1	1880	1885	53	• •	•				-3	0	2474	2420	123
-9	-3	1369	1462	48	-16	0	1978	2051	56	-2	-1	561	505	25
-9	-1	2028	2025	55	-15	-1	1011	908	39	-1	-2	505	532	59
-8	0	3603	3645	99	-14	0	407	405	40	-1	<u> </u>	629	628	45
-7	-3	505	511	34	-13	-1	4502	4472	115	1	2	870	862	68
-7	-1	704	649	54	-12	-2	1049	1622	51	4	3	549	531	32
-4	0	463	428	29	-12	0	1792	1865	51	3	0	2111	2189	70
-3	-3	1357	1393	47	-11	-1	850	883	87	2	0	8654	8454	217
-3	-1	1924	2058	/0	-10	-2	1582	15/4	02		2	3415	3349	132
-2	-2	5905	592/	12/	-3	-3	2038	20/3	20			2/49	2/41	101
-1		1132	1240	27	-8	-2	911	270	30	11	4	2303	2200	123
v v	-2	5/4	540	23	- 2	Š	139	1057	112	13	U N	3433	3204	103
U I	ų,	1014	001	23	- /	-3	1/4/	102/	112	11	U	2939	3032	204
- 1	2	1014	500	10		_ 2	930	002	12	****		h	10 ++++	****
Å	2	243	330	25	-3	-3	125	419	50				10	
- 4 	4	3/3	341	30	-3	- 3	433	505	43	-14	_ ?	2449	2420	01
5	3	433	407	20	-3	-1	4630	4412	100	_12	- 1	1001	1061	74
12	2	1110	1106	122	_1	_1	1620	1692	190	-12	5	2061	2003	122
14	Ň	203	660	81	-		2353	2280	62	-12	-6	2248	2302	80
15	ĭ	1657	1698	120	ň	- 0	2904	2831	A1	_10	_2	2497	2445	135
17	1	1001	077	125	ĭ	ĭ	851	914	31	-10	-	2730	2850	95
16	ō	1666	1660	188	5	ñ	4320	4402	242		_1	1100	1170	112
10	U	1000	1003	100	5	ž	3572	3451	184	_8		523	538	64
****	***	h -	7 ***	****	ĩ	1	805	803	40	_8	-6	646	630	49
		–	/		ž	2	607	605	30	_7	ĭ	3491	3649	211
-17	0	1502	1640	50	Ă	័	5275	5333	1 3 3	-7	_1	4849	4809	346
-16	1	550	588	68		ž	4378	4327	132	-6		1430	1445	46
-15	-1	1452	1482	45	Ä	5	3067	3030	118	-6	ីពី	1804	1744	82
_10	_1	1715	1737	52	ă	2	986	1008	104	-5	-3	4595	4742	137
ă	_ 1	3000	3078	102	31	1	415	241	35	-5	-1	6647	6350	302
A	_ ž	3505	3754	120	12	ō	1589	1647	154	-4	ō	1514	1464	77
_8		5316	5208	188	12	ĭ	1685	1592	- 77	-3	-3	2455	2426	68
-7		665	717	68	14	5	394	311	45	-3	-1	3363	3328	86
	_1	1106	1160	65	17	1	5167	5085	362	-2	_2	844	848	62

•

•

k	1	Fo	FC	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	BigF
0	1	2816	2842	90										
1	Ō	2044	2142	97										
ī	2	1927	1890	57										
- 3	ō	2173	2244	66										
Ē	ő	824	849	35										
š	1	1414	1457	49										
ŏ	ħ.	2401	2544	60										
7	U	2421	2344	00										
****	***	h = 3	18 ***	****										
-7	-1	1771	1785	127										
-3	-1	3261	3215	213										
-1	-1	5071	4970	220										
0	0	804	778	44										
1	1	1788	1741	53										
2	Ō	598	580	31										
- 1	i	2079	2105	59										
ĕ	ñ	1345	1364	46										
ž	ĭ	1121	1110	47										
é	5	1405	1400	00										
0	v	7400	7403	20										
****	***	h = 3	19 ***	****										
-3	0	952	1037	72										
$-\tilde{2}$	-1	1575	1608	150										
า	.	- 992	1083	- 96										

· · ·

.

178

.

ı

.

•

.

•

APPENDIX F OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (x10) FOR $Nb_xTa_{2-x}S$ (x ≈ 0.2)

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
• • •		h =	0		4	20	3145	3367	0	-3	-13	1516	1513	81
	-				6	-16	2503	2612	0	-3	-7	2509	2475	82
0	2	4159	4151	67	6	-15	2449	2399	0	-3	-6	4972	5052	0
Ň	4	1894	1889	51	6	-11	1628	1554	0	-3	-4	2943	2897	79
Ň	0	5290	5202	90	, p	-5	1457	1349	0	-3	.7	2642	2474	0
Ň	10	4401	44/9	03	ç		3303	346/	0	- 3	10	3336	3249	0
Ň	10	3/33	3/1/	82	Č	1	241/	234/	66	- 3	22	1366	1702	0
Ň	14	1 5 0 4	1 2 7 1		D C	3	2102	21/9	70	-2	-23	2057	2006	91
Ň	14	22204	2200	12 -	2	4	1405	2000	/8	-2	-21	3086	29/3	U O
ň	10	2333	2207	Ň	2	11	1405	1565	0	-2	-1/	190/	1922	0
ň	20	5152	5239	ň	Š	12	1975	1050	Ň	-2	-9	3//4	3949	- U
ň	22	1355	1320	ň	Š	15	2/20	2400	ň	-2	- 5	14/7	14/3	22
ŏ	24	1080	2007	20	Š	16	2614	2400	ň	-2	- 3	1210	1150	0 Č
ž	-19	2931	2037	0	Å	-11	1452	1507	ň	-2		4504	1130	30
2	-1	6060	6019	۵ŏ	Å	_10	1674	1506	ň	-2		6009	50/7	Ň
2	3	5614	5501	6	Ă	-10	1667	1916	ŏ	_5	17	1056	1077	ň
2	ă	1578	1569	50	Ă		4452	4372	ň	_1	-11	1339	1373	ň
2	5	2976	2896	75	Ă	ĭ	2484	2426	76	1		2385	2201	63
2	7	1061	916	ŏ	Ř	2	1584	1600	ň	-1	-7	4020	4086	٥ <u>٦</u>
2	ġ	1090	1037	ŏ	8	3	1910	1878	ŏ	-1	- 4	1630	1583	47
2	11	3157	3164	83	8	6	1945	1940	90	-1	11	1302	1373	9Å
2	13	2578	2444	78	•	•			••	ō	-22	1090	1270	ñ
2	15	4621	4678	ō	• • • •	• • • •	h =	1		ŏ	-18	2017	1924	83
2	17	2155	2086	83				-		ō	-10	1922	1875	74
2	19	2976	2943	0	-8	-6	1217	1258	0	Ō	-6	4455	4453	Ó
4	-20	3172	3366	Ó	-7	-14	1619	1570	Ō	Ő	-2	984	912	88
4	-18	3168	3338	0	-7	- 4	1202	994	Ō	0	Ō	3630	3511	83
4	-16	1241	1321	0	-7	6	3729	3683	Ó	Ó	12	2644	2551	0
4	-15	1593	1719	0	-7	10	2176	2149	0	0	24	1395	1404	Ó
4	-14	1398	1395	0	-7	14	1820	1569	0	1	-10	2144	2136	77
4	-13	1217	924	0	-6	-11	2190	2029	0	1	5	5365	5460	0
4	-12	5646	5665	0	-6	-10	1444	1351	0	1	6	5607	5664	0
4	-11	1352	1515	0	-6	-5	1287	1186	0	1	10	2056	2137	75
- 4	-10	4081	4113	0	-5	-13	1258	1571	0	1	13	1788	2115	0
- 4	-8	2625	2599	95	-5	-11	1418	1416	0	1	21	1737	1553	88
4	-3	1567	1532	81	-5	-5	3993	3987	0	2	-21	2922	2972	0
- 4	-2	4011	3917	0	-5	-4	1197	1396	0	2	1	2784	2750	97
4	0	8895	8971	0	-5	11	1342	1415	0	2	11	3088	3135	0
4	1	2228	2272	61	-5	13	1646	1570	0	2	15	3390	3356	82
4	2	3771	3918	0	-4	-14	1192	1163	0	3	-16	1813	1984	0
4	3	1456	1532	89	-4	-13	1306	1255	0	3	2	1341	1335	0
4	5	1037	992	94	-4	-10	1782	1675	0	3	5	3012	2978	80
4	6	3593	3462	0	-4	-6	3956	3956	0	3	10	3113	3251	93
4	. 8	2659	2600	28	-4	-5	1115	1169	0	3	14	1740	1721	0
4	10	4084	4115	0	-4	-3	1050	959	0	ž	18	1355	1393	0
4	11	1474	1516	0	-4	0	3072	2952	0	4	-18	1557	1648	0
4	12	5650	5669	U Q	-3	-22	1749	1703	U O	4	-14	1196	1162	0
4	12	1008	1720	U	-3	-17	1241	1230	U	4	-12	2030	2003	97
- 4	18	3370	3340	0	-3	-16	1987	1985	0	- 4	-7	1574	1525	0

.

.

k	1	Fo	Fc	SigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
4	.7	1566	1526	95	-1	-2	1783	1894	86	8	5	1862	1891	0
4	12	2033	2004	97	-1	-1	1517	1584	0	8	6	1867	1967	0
5	-12	2100	15/6	ů.	-1	- 4	3868	3914	0			h _		
5	-7	2103	2203	ő	Ň	-24	1935	1170	Ň			n =	3	
ភ្	- 6	1056	1084	ň	ň	-22	1207	746	ň	_0	_0	1250	1000	•
š	ž	2858	2949	ň	ň	-10	1064	1004	۵ŏ	0	- 7	1224	1247	Ň
5	ģ	2251	2206	8Å	ň	-16	2300	2245	88	_8	-4	1702	1507	0
6	-15	2298	2279	Ő	ŏ	-10	6955	7058	00	-7	-4	2495	2466	Ň
6	-11	2106	2027	ŏ	ŏ	4	3366	3327	ŏ	_7	-7	3976	4054	ň
6	-9	3801	3550	õ	ŏ	10	2904	2846	ŏ	-5	-15	2752	2636	ň
6	ī	1594	1516	81	ŏ	14	2982	2994	98	-5	-11	2023	2258	ŏ
6	3	3753	3779	Ō	Ĩ	-15	3212	3191	Õ	-5	-7	1217	986	ŏ
6	9	3525	3552	Ō	1	-4	3898	3915	Ō	-5	-i	3491	3509	ŏ
6	12	1107	607	0	1	5	1743	1726	52	-5	11	2304	2257	ō
6	15	2131	2281	0	1	9	2629	2697	67	-5	19	2010	2228	Õ
7	6	3692	3685	0	1	10	1386	1338	70	-4	-12	2775	3005	0
7	10	2271	2150	0	1	16	2753	2823	75	-4	-10	4189	4250	0
					2	3	3364	3391	0	-4	-4	2517	2661	0
~ ~ ~ ^		h =	2	* * * *	2	9	5412	5508	0	-4	-2	3779	3829	0
	_				2	19	1552	1637	0	-4	0	4499	4474	0
-8	5	1928	1891	0	2	21	3308	3413	0	-4	2	3866	3829	0
-8	6	1574	1967	0	2	23	1773	1738	0	-4	8	3190	3363	0
-6	-9	2929	2955	0	3	-3	2534	2570	ō	-4	12	2790	3003	0
-6	-6	1819	1766	0	3	0	4065	4124	0	-4	14	1383	1388	0
-0		1164	1020	0	2	4	4490	4441	-0	-4	20	2669	2549	0
-0	10	2/00	20/4	ů.	2	8	125/	1202	/8	- 3	-20	1/43	1541	0
	-10	1441	730	02	3	16	1/39	1000	88	- 3	-19	1722	1021	0
-5		2231	2961	93	3	_16	2402	2221	0	_ 2	-12	1227	1100	Ň
_5	_1	1711	1706	ň		-14	1004	1802	ň		-3	5547	5414	Ň
_5	15	2961	2901	ŏ	4	_10	1807	1730	07	_3	16	2811	3022	ň
-4	-7	1300	1192	ñ	Δ	Ξ,	1951	1855	75		-21	1433	1252	ň
-4	-6	3961	4006	õ	4	Ã	948	824	้ถึ	-2	-11	1367	1430	96
-4	-4	2888	2957	ŏ	4	10	1775	1740	98	-2	-7	1724	1720	61
-3	-15	1906	1838	ŏ	4	14	1792	1803	ō	-2	-i	1208	1229	ō
-3	-14	1316	1325	Ō	4	16	2115	2203	Ō	-1	-16	2692	2669	Õ
-3	-12	2220	2066	Ó	4	17	1352	777	Ō	-1	-11	2666	2654	Ō
-3	-10	2607	2607	84	5	-17	1414	1382	Ó	-1	-6	1207	1243	70
-3	-5	1303	1354	84	5	-9	2315	2323	0	-1	-5	942	886	98
-3	- 3	2548	2571	93	5	4	1724	1717	95	-1	-4	3237	3257	0
- 3	-2	2687	2654	93	- 5	5	1049	1048	0	-1	0	5904	5890	0
-3	15	1813	1837	0	5	15	2952	2903	0	-1	19	2557	2557	0
-3	16	3565	3555	0	6	-10	1905	1969	0	0	-22	3369	3243	0
-2	-11	4777	4714	98	6	-9	2898	2953	0	0	-18	1987	1864	98
-2	-1	5298	5258	0	6	1	2739	2790	89	0	-16	1375	1339	0
-1	-15	3247	3192	0	6	3	1890	1837	0	Q	-14	2122	2133	85
-1	-14	1200	1512	0	6	11	2529	2676	0	ō	-12	3269	3280	0
-1	-8	2183	2206	70	2	Q	1638	1864	0	Õ	-10	6268	6236	. 0
-1	- 3	4735	4852	0	7	4	2373	2534	U	0	-2	6144	9130	U

.

.

.

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	БigF
x 00000111111122333333344455555667	$\begin{array}{c} 1 \\ 0 \\ 4 \\ 6 \\ 8 \\ 2 \\ 1 \\ 3 \\ 7 \\ 1 \\ 2 \\ 1 \\ 3 \\ 7 \\ 1 \\ 1 \\ 5 \\ 9 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	F0 40912865 595361 378162 378162 378490 88558 2267439 1285572 3125557 1265572 31255579 1265579 1265579 1265579 1265572 21839884 215572 126398847 2215572 125	F C 4650 57598019 52588198319831983169178227554 338819831691782275544 33681831691782275544 3368531542405221846495 3125542444255345226 312554244255345226 218464952266 2184649526 2184649526 21846495566 21846495566 21846495566 21846495566 2184649566 21846495666 2184666 2184666666666666666666666666666666666666	519F 0 0 77992 50 70 0 0 7 70 0 0 0 0 0 0 0 0 0 0 0 0	x 2222111111000000111111122222333334555	-13 -7 -99 -64 -22 132 102 55 17 199 -14 122 55 17 198 215 179 -18 26 70 65 77 17 179 -18 275 179 -18 177 -19 -18 -100 -10 -10	Fo 4952 39750855 18651 244818 1975987 49543206 4237040 197593 3179783 1275987 3179783 1225326 2277664 1226978 1362277622 1165632 225336 122697836 122697836	FC 4204 30601 25210 185220 4983901 25210 4983901 276719 4584 23845 318639 227197 188320 188320 237197 188322 254557 11179 28814 28914 28914 280186 200879	519F 0 82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	K 4333332222221111000000000111111112222	$\begin{array}{c} 1 \\ 1620908 \\ -120908 \\ -73092200426204 \\ 1220426204 \\ 1122113 \\ 112113 \end{array}$	Fo 38939512272122109507844 2222222222122109507844 122222222222222222222222222222222222	Fc 4033 16000 2158 2768 22158 22158 22158 22158 22158 22158 22158 22158 22158 2365 23798 2365 2365 2365 23758 2365 23758 2365 23758 2365 23758 2365 23758 2365 23758 2375	5 i gF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 8	0 2	1943 2251	1923 2255	0 0	6	-15	1781 2515	1674 2523	0	2	19 21	3133 1542	3207 1257	0
	• • •	h =	4		7	13	2203	2394	0	3 3 3	-20 -12 2	1369 1723	1541 1600 1696	0 98
8666665443333	-2 -15 -7 -6 -5 3 -9 -10 -2 -18 -14 -13 -5	1363 1318 3169 2110 3552 1535 2048 2677 1553 1653 1638 1171 2138	787 1675 3295 2145 3585 1325 2071 2760 1611 1455 1628 1162 2124	0 0 9 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-8 -66 -54 -44 -44 -44 -44	$ \begin{array}{r} -3 \\ -13 \\ -1 \\ 13 \\ -2 \\ -16 \\ -14 \\ -4 \\ -2 \\ -1 \\ 0 \\ \end{array} $	<pre>h = 1636 2290 3141 1986 1289 3905 1822 4424 2091 1571 3588</pre>	5 1686 2128 3168 2126 1222 4035 1912 4643 2144 1539 3537	0 90 0 0 0 92 0 0	33444445556678	20 -12 3 8 10 12 0 1 8 7 11 -10 4	1,23 1684 1767 1967 1565 1607 1565 1671 1541 1394 1638 2246 1384 2042	1542 1700 1896 1380 1675 1700 1746 1502 1355 1640 2073 1704 2035	

k	1	Fo	Fc	sigF	k	1	Fo	FC	sigF	k	1	Fo	Fc	sigF
-2	-3	3994	3958	0										
-1	-11	1260	1276	Ó										
- 1	-6	1481	1558	Ō		•								
-1	-5	1323	1106	ŏ										
ō	ō	3224	3094	ŏ										
ň	Ă	2048	2153	ň										
ž	_5	2159	2250	· ň										
5	Ē	2240	2255	ň										
2	2	2100	1074	Ň										
3		2100	1224											
4	0	2091	1906	0										
• • • •		h = 1	1	• • • •										
-2	-3	2223	1846	0										
ō	Ō	4219	4222	0										
ŏ	6	1598	1533	ō										
ĩ	Š	1197	- 929	ō										

•

•

•

۰.

.

.